You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Copy file name to clipboardExpand all lines: lib/node_modules/@stdlib/stats/base/README.md
+8-8Lines changed: 8 additions & 8 deletions
Original file line number
Diff line number
Diff line change
@@ -65,8 +65,8 @@ The namespace contains the following statistical functions:
65
65
- <spanclass="signature">[`dmeanstdevpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanstdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and standard deviation of a double-precision floating-point strided array using a two-pass algorithm.</span>
66
66
- <spanclass="signature">[`dmeanvar( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvar]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and variance of a double-precision floating-point strided array.</span>
67
67
- <spanclass="signature">[`dmeanvarpn( N, correction, x, strideX, out, strideOut )`][@stdlib/stats/base/dmeanvarpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the mean and variance of a double-precision floating-point strided array using a two-pass algorithm.</span>
68
-
- <spanclass="signature">[`dvarm( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarm]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array provided a known mean.</span>
69
-
- <spanclass="signature">[`dvarmpn( N, mean, correction, x, stride )`][@stdlib/stats/base/dvarmpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.</span>
68
+
- <spanclass="signature">[`dvarm( N, mean, correction, x, strideX )`][@stdlib/stats/base/dvarm]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array provided a known mean.</span>
69
+
- <spanclass="signature">[`dvarmpn( N, mean, correction, x, strideX )`][@stdlib/stats/base/dvarmpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a double-precision floating-point strided array provided a known mean and using Neely's correction algorithm.</span>
70
70
- <spanclass="signature">[`nanmean( N, x, strideX )`][@stdlib/stats/base/nanmean]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values.</span>
71
71
- <spanclass="signature">[`nanmeanors( N, x, stride )`][@stdlib/stats/base/nanmeanors]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using ordinary recursive summation.</span>
72
72
- <spanclass="signature">[`nanmeanpn( N, x, strideX )`][@stdlib/stats/base/nanmeanpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the arithmetic mean of a strided array, ignoring `NaN` values and using a two-pass error correction algorithm.</span>
@@ -83,7 +83,7 @@ The namespace contains the following statistical functions:
83
83
- <spanclass="signature">[`nanstdevwd( N, correction, x, stride )`][@stdlib/stats/base/nanstdevwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array ignoring `NaN` values and using Welford's algorithm.</span>
84
84
- <spanclass="signature">[`nanstdevyc( N, correction, x, stride )`][@stdlib/stats/base/nanstdevyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
85
85
- <spanclass="signature">[`nanvariance( N, correction, x, stride )`][@stdlib/stats/base/nanvariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values.</span>
86
-
- <spanclass="signature">[`nanvariancech( N, correction, x, stride )`][@stdlib/stats/base/nanvariancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
86
+
- <spanclass="signature">[`nanvariancech( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass trial mean algorithm.</span>
87
87
- <spanclass="signature">[`nanvariancepn( N, correction, x, stride )`][@stdlib/stats/base/nanvariancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a two-pass algorithm.</span>
88
88
- <spanclass="signature">[`nanvariancetk( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancetk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using a one-pass textbook algorithm.</span>
89
89
- <spanclass="signature">[`nanvariancewd( N, correction, x, strideX )`][@stdlib/stats/base/nanvariancewd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array ignoring `NaN` values and using Welford's algorithm.</span>
@@ -111,17 +111,17 @@ The namespace contains the following statistical functions:
111
111
- <spanclass="signature">[`snanvariancewd( N, correction, x, stride )`][@stdlib/stats/base/snanvariancewd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using Welford's algorithm.</span>
112
112
- <spanclass="signature">[`snanvarianceyc( N, correction, x, stride )`][@stdlib/stats/base/snanvarianceyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array ignoring `NaN` values and using a one-pass algorithm proposed by Youngs and Cramer.</span>
113
113
- <spanclass="signature">[`sstdevwd( N, correction, x, stride )`][@stdlib/stats/base/sstdevwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a single-precision floating-point strided array using Welford's algorithm.</span>
114
-
- <spanclass="signature">[`stdev( N, correction, x, stride )`][@stdlib/stats/base/stdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array.</span>
115
-
- <spanclass="signature">[`stdevch( N, correction, x, stride )`][@stdlib/stats/base/stdevch]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array using a one-pass trial mean algorithm.</span>
116
-
- <spanclass="signature">[`stdevpn( N, correction, x, stride )`][@stdlib/stats/base/stdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array using a two-pass algorithm.</span>
114
+
- <spanclass="signature">[`stdev( N, correction, x, strideX )`][@stdlib/stats/base/stdev]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array.</span>
115
+
- <spanclass="signature">[`stdevch( N, correction, x, strideX )`][@stdlib/stats/base/stdevch]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array using a one-pass trial mean algorithm.</span>
116
+
- <spanclass="signature">[`stdevpn( N, correction, x, strideX )`][@stdlib/stats/base/stdevpn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array using a two-pass algorithm.</span>
117
117
- <spanclass="signature">[`stdevtk( N, correction, x, stride )`][@stdlib/stats/base/stdevtk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array using a one-pass textbook algorithm.</span>
118
118
- <spanclass="signature">[`stdevwd( N, correction, x, stride )`][@stdlib/stats/base/stdevwd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array using Welford's algorithm.</span>
119
119
- <spanclass="signature">[`stdevyc( N, correction, x, stride )`][@stdlib/stats/base/stdevyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the standard deviation of a strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
120
120
- <spanclass="signature">[`svariance( N, correction, x, stride )`][@stdlib/stats/base/svariance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array.</span>
121
121
- <spanclass="signature">[`svariancewd( N, correction, x, strideX )`][@stdlib/stats/base/svariancewd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a single-precision floating-point strided array using Welford's algorithm.</span>
122
122
- <spanclass="signature">[`variance( N, correction, x, stride )`][@stdlib/stats/base/variance]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array.</span>
123
-
- <spanclass="signature">[`variancech( N, correction, x, stride )`][@stdlib/stats/base/variancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array using a one-pass trial mean algorithm.</span>
124
-
- <spanclass="signature">[`variancepn( N, correction, x, stride )`][@stdlib/stats/base/variancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array using a two-pass algorithm.</span>
123
+
- <spanclass="signature">[`variancech( N, correction, x, strideX )`][@stdlib/stats/base/variancech]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array using a one-pass trial mean algorithm.</span>
124
+
- <spanclass="signature">[`variancepn( N, correction, x, strideX )`][@stdlib/stats/base/variancepn]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array using a two-pass algorithm.</span>
125
125
- <spanclass="signature">[`variancetk( N, correction, x, stride )`][@stdlib/stats/base/variancetk]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array using a one-pass textbook algorithm.</span>
126
126
- <spanclass="signature">[`variancewd( N, correction, x, stride )`][@stdlib/stats/base/variancewd]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array using Welford's algorithm.</span>
127
127
- <spanclass="signature">[`varianceyc( N, correction, x, strideX )`][@stdlib/stats/base/varianceyc]</span><spanclass="delimiter">: </span><spanclass="description">calculate the variance of a strided array using a one-pass algorithm proposed by Youngs and Cramer.</span>
0 commit comments