@@ -94,6 +94,210 @@ class ScalarExprEmitter : public StmtVisitor<ScalarExprEmitter, mlir::Value> {
94
94
95
95
mlir::Value VisitUnaryExprOrTypeTraitExpr (const UnaryExprOrTypeTraitExpr *e);
96
96
97
+ // Unary Operators.
98
+ mlir::Value VisitUnaryPostDec (const UnaryOperator *e) {
99
+ LValue lv = cgf.emitLValue (e->getSubExpr ());
100
+ return emitScalarPrePostIncDec (e, lv, false , false );
101
+ }
102
+ mlir::Value VisitUnaryPostInc (const UnaryOperator *e) {
103
+ LValue lv = cgf.emitLValue (e->getSubExpr ());
104
+ return emitScalarPrePostIncDec (e, lv, true , false );
105
+ }
106
+ mlir::Value VisitUnaryPreDec (const UnaryOperator *e) {
107
+ LValue lv = cgf.emitLValue (e->getSubExpr ());
108
+ return emitScalarPrePostIncDec (e, lv, false , true );
109
+ }
110
+ mlir::Value VisitUnaryPreInc (const UnaryOperator *e) {
111
+ LValue lv = cgf.emitLValue (e->getSubExpr ());
112
+ return emitScalarPrePostIncDec (e, lv, true , true );
113
+ }
114
+ mlir::Value emitScalarPrePostIncDec (const UnaryOperator *e, LValue lv,
115
+ bool isInc, bool isPre) {
116
+ if (cgf.getLangOpts ().OpenMP )
117
+ cgf.cgm .errorNYI (e->getSourceRange (), " inc/dec OpenMP" );
118
+
119
+ QualType type = e->getSubExpr ()->getType ();
120
+
121
+ mlir::Value value;
122
+ mlir::Value input;
123
+
124
+ if (type->getAs <AtomicType>()) {
125
+ cgf.cgm .errorNYI (e->getSourceRange (), " Atomic inc/dec" );
126
+ // TODO(cir): This is not correct, but it will produce reasonable code
127
+ // until atomic operations are implemented.
128
+ value = cgf.emitLoadOfLValue (lv, e->getExprLoc ()).getScalarVal ();
129
+ input = value;
130
+ } else {
131
+ value = cgf.emitLoadOfLValue (lv, e->getExprLoc ()).getScalarVal ();
132
+ input = value;
133
+ }
134
+
135
+ // NOTE: When possible, more frequent cases are handled first.
136
+
137
+ // Special case of integer increment that we have to check first: bool++.
138
+ // Due to promotion rules, we get:
139
+ // bool++ -> bool = bool + 1
140
+ // -> bool = (int)bool + 1
141
+ // -> bool = ((int)bool + 1 != 0)
142
+ // An interesting aspect of this is that increment is always true.
143
+ // Decrement does not have this property.
144
+ if (isInc && type->isBooleanType ()) {
145
+ value = builder.create <cir::ConstantOp>(cgf.getLoc (e->getExprLoc ()),
146
+ cgf.convertType (type),
147
+ builder.getCIRBoolAttr (true ));
148
+ } else if (type->isIntegerType ()) {
149
+ QualType promotedType;
150
+ bool canPerformLossyDemotionCheck = false ;
151
+ if (cgf.getContext ().isPromotableIntegerType (type)) {
152
+ promotedType = cgf.getContext ().getPromotedIntegerType (type);
153
+ assert (promotedType != type && " Shouldn't promote to the same type." );
154
+ canPerformLossyDemotionCheck = true ;
155
+ canPerformLossyDemotionCheck &=
156
+ cgf.getContext ().getCanonicalType (type) !=
157
+ cgf.getContext ().getCanonicalType (promotedType);
158
+ canPerformLossyDemotionCheck &=
159
+ type->isIntegerType () && promotedType->isIntegerType ();
160
+
161
+ // TODO(cir): Currently, we store bitwidths in CIR types only for
162
+ // integers. This might also be required for other types.
163
+
164
+ assert (
165
+ (!canPerformLossyDemotionCheck ||
166
+ type->isSignedIntegerOrEnumerationType () ||
167
+ promotedType->isSignedIntegerOrEnumerationType () ||
168
+ mlir::cast<cir::IntType>(cgf.convertType (type)).getWidth () ==
169
+ mlir::cast<cir::IntType>(cgf.convertType (type)).getWidth ()) &&
170
+ " The following check expects that if we do promotion to different "
171
+ " underlying canonical type, at least one of the types (either "
172
+ " base or promoted) will be signed, or the bitwidths will match." );
173
+ }
174
+
175
+ assert (!cir::MissingFeatures::sanitizers ());
176
+ if (e->canOverflow () && type->isSignedIntegerOrEnumerationType ()) {
177
+ value = emitIncDecConsiderOverflowBehavior (e, value, isInc);
178
+ } else {
179
+ cir::UnaryOpKind kind =
180
+ e->isIncrementOp () ? cir::UnaryOpKind::Inc : cir::UnaryOpKind::Dec;
181
+ // NOTE(CIR): clang calls CreateAdd but folds this to a unary op
182
+ value = emitUnaryOp (e, kind, input);
183
+ }
184
+ } else if (const PointerType *ptr = type->getAs <PointerType>()) {
185
+ cgf.cgm .errorNYI (e->getSourceRange (), " Unary inc/dec pointer" );
186
+ return {};
187
+ } else if (type->isVectorType ()) {
188
+ cgf.cgm .errorNYI (e->getSourceRange (), " Unary inc/dec vector" );
189
+ return {};
190
+ } else if (type->isRealFloatingType ()) {
191
+ assert (!cir::MissingFeatures::CGFPOptionsRAII ());
192
+
193
+ if (type->isHalfType () &&
194
+ !cgf.getContext ().getLangOpts ().NativeHalfType ) {
195
+ cgf.cgm .errorNYI (e->getSourceRange (), " Unary inc/dec half" );
196
+ return {};
197
+ }
198
+
199
+ if (mlir::isa<cir::SingleType, cir::DoubleType>(value.getType ())) {
200
+ // Create the inc/dec operation.
201
+ // NOTE(CIR): clang calls CreateAdd but folds this to a unary op
202
+ cir::UnaryOpKind kind =
203
+ (isInc ? cir::UnaryOpKind::Inc : cir::UnaryOpKind::Dec);
204
+ value = emitUnaryOp (e, kind, value);
205
+ } else {
206
+ cgf.cgm .errorNYI (e->getSourceRange (), " Unary inc/dec other fp type" );
207
+ return {};
208
+ }
209
+ } else if (type->isFixedPointType ()) {
210
+ cgf.cgm .errorNYI (e->getSourceRange (), " Unary inc/dec other fixed point" );
211
+ return {};
212
+ } else {
213
+ assert (type->castAs <ObjCObjectPointerType>());
214
+ cgf.cgm .errorNYI (e->getSourceRange (), " Unary inc/dec ObjectiveC pointer" );
215
+ return {};
216
+ }
217
+
218
+ CIRGenFunction::SourceLocRAIIObject sourceloc{
219
+ cgf, cgf.getLoc (e->getSourceRange ())};
220
+
221
+ // Store the updated result through the lvalue
222
+ if (lv.isBitField ()) {
223
+ cgf.cgm .errorNYI (e->getSourceRange (), " Unary inc/dec bitfield" );
224
+ return {};
225
+ } else {
226
+ cgf.emitStoreThroughLValue (RValue::get (value), lv);
227
+ }
228
+
229
+ // If this is a postinc, return the value read from memory, otherwise use
230
+ // the updated value.
231
+ return isPre ? value : input;
232
+ }
233
+
234
+ mlir::Value emitIncDecConsiderOverflowBehavior (const UnaryOperator *e,
235
+ mlir::Value inVal,
236
+ bool isInc) {
237
+ assert (!cir::MissingFeatures::opUnarySignedOverflow ());
238
+ cir::UnaryOpKind kind =
239
+ e->isIncrementOp () ? cir::UnaryOpKind::Inc : cir::UnaryOpKind::Dec;
240
+ switch (cgf.getLangOpts ().getSignedOverflowBehavior ()) {
241
+ case LangOptions::SOB_Defined:
242
+ return emitUnaryOp (e, kind, inVal);
243
+ case LangOptions::SOB_Undefined:
244
+ assert (!cir::MissingFeatures::sanitizers ());
245
+ return emitUnaryOp (e, kind, inVal);
246
+ break ;
247
+ case LangOptions::SOB_Trapping:
248
+ if (!e->canOverflow ())
249
+ return emitUnaryOp (e, kind, inVal);
250
+ cgf.cgm .errorNYI (e->getSourceRange (), " inc/def overflow SOB_Trapping" );
251
+ return {};
252
+ }
253
+ llvm_unreachable (" Unexpected signed overflow behavior kind" );
254
+ }
255
+
256
+ mlir::Value VisitUnaryPlus (const UnaryOperator *e,
257
+ QualType promotionType = QualType()) {
258
+ if (!promotionType.isNull ())
259
+ cgf.cgm .errorNYI (e->getSourceRange (), " VisitUnaryPlus: promotionType" );
260
+ assert (!cir::MissingFeatures::opUnaryPromotionType ());
261
+ mlir::Value result = emitUnaryPlusOrMinus (e, cir::UnaryOpKind::Plus);
262
+ return result;
263
+ }
264
+
265
+ mlir::Value VisitUnaryMinus (const UnaryOperator *e,
266
+ QualType promotionType = QualType()) {
267
+ if (!promotionType.isNull ())
268
+ cgf.cgm .errorNYI (e->getSourceRange (), " VisitUnaryMinus: promotionType" );
269
+ assert (!cir::MissingFeatures::opUnaryPromotionType ());
270
+ mlir::Value result = emitUnaryPlusOrMinus (e, cir::UnaryOpKind::Minus);
271
+ return result;
272
+ }
273
+
274
+ mlir::Value emitUnaryPlusOrMinus (const UnaryOperator *e,
275
+ cir::UnaryOpKind kind) {
276
+ ignoreResultAssign = false ;
277
+
278
+ assert (!cir::MissingFeatures::opUnaryPromotionType ());
279
+ mlir::Value operand = Visit (e->getSubExpr ());
280
+
281
+ assert (!cir::MissingFeatures::opUnarySignedOverflow ());
282
+
283
+ // NOTE: LLVM codegen will lower this directly to either a FNeg
284
+ // or a Sub instruction. In CIR this will be handled later in LowerToLLVM.
285
+ return emitUnaryOp (e, kind, operand);
286
+ }
287
+
288
+ mlir::Value emitUnaryOp (const UnaryOperator *e, cir::UnaryOpKind kind,
289
+ mlir::Value input) {
290
+ return builder.create <cir::UnaryOp>(
291
+ cgf.getLoc (e->getSourceRange ().getBegin ()), input.getType (), kind,
292
+ input);
293
+ }
294
+
295
+ mlir::Value VisitUnaryNot (const UnaryOperator *e) {
296
+ ignoreResultAssign = false ;
297
+ mlir::Value op = Visit (e->getSubExpr ());
298
+ return emitUnaryOp (e, cir::UnaryOpKind::Not, op);
299
+ }
300
+
97
301
// / Emit a conversion from the specified type to the specified destination
98
302
// / type, both of which are CIR scalar types.
99
303
// / TODO: do we need ScalarConversionOpts here? Should be done in another
@@ -188,3 +392,10 @@ mlir::Value ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
188
392
loc, builder.getAttr <cir::IntAttr>(
189
393
cgf.cgm .UInt64Ty , e->EvaluateKnownConstInt (cgf.getContext ())));
190
394
}
395
+
396
+ mlir::Value CIRGenFunction::emitScalarPrePostIncDec (const UnaryOperator *E,
397
+ LValue LV, bool isInc,
398
+ bool isPre) {
399
+ return ScalarExprEmitter (*this , builder)
400
+ .emitScalarPrePostIncDec (E, LV, isInc, isPre);
401
+ }
0 commit comments