|
| 1 | +//===--- FloatingPointPrinting.swift -----------------------------------===// |
| 2 | +// |
| 3 | +// This source file is part of the Swift.org open source project |
| 4 | +// |
| 5 | +// Copyright (c) 2018 Apple Inc. and the Swift project authors |
| 6 | +// Licensed under Apache License v2.0 with Runtime Library Exception |
| 7 | +// |
| 8 | +// See https://swift.org/LICENSE.txt for license information |
| 9 | +// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors |
| 10 | +// |
| 11 | +//===----------------------------------------------------------------------===// |
| 12 | + |
| 13 | +// This test verifies the performance of generating a text description |
| 14 | +// from a binary floating-point value. |
| 15 | + |
| 16 | +import TestsUtils |
| 17 | + |
| 18 | +public let FloatingPointPrinting = [ |
| 19 | + BenchmarkInfo( |
| 20 | + name: "FloatingPointPrinting_Float_description_small", |
| 21 | + runFunction: run_FloatingPointPrinting_Float_description_small, |
| 22 | + tags: [.validation, .api, .runtime, .String]), |
| 23 | + |
| 24 | + BenchmarkInfo( |
| 25 | + name: "FloatingPointPrinting_Double_description_small", |
| 26 | + runFunction: run_FloatingPointPrinting_Double_description_small, |
| 27 | + tags: [.validation, .api, .runtime, .String]), |
| 28 | + |
| 29 | + BenchmarkInfo( |
| 30 | + name: "FloatingPointPrinting_Float80_description_small", |
| 31 | + runFunction: run_FloatingPointPrinting_Float80_description_small, |
| 32 | + tags: [.validation, .api, .runtime, .String]), |
| 33 | + |
| 34 | + BenchmarkInfo( |
| 35 | + name: "FloatingPointPrinting_Float_description_uniform", |
| 36 | + runFunction: run_FloatingPointPrinting_Float_description_uniform, |
| 37 | + tags: [.validation, .api, .runtime, .String]), |
| 38 | + |
| 39 | + BenchmarkInfo( |
| 40 | + name: "FloatingPointPrinting_Double_description_uniform", |
| 41 | + runFunction: run_FloatingPointPrinting_Double_description_uniform, |
| 42 | + tags: [.validation, .api, .runtime, .String]), |
| 43 | + |
| 44 | + BenchmarkInfo( |
| 45 | + name: "FloatingPointPrinting_Float80_description_uniform", |
| 46 | + runFunction: run_FloatingPointPrinting_Float80_description_uniform, |
| 47 | + tags: [.validation, .api, .runtime, .String]), |
| 48 | + |
| 49 | + BenchmarkInfo( |
| 50 | + name: "FloatingPointPrinting_Float_interpolated", |
| 51 | + runFunction: run_FloatingPointPrinting_Float_interpolated, |
| 52 | + tags: [.validation, .api, .runtime, .String]), |
| 53 | + |
| 54 | + BenchmarkInfo( |
| 55 | + name: "FloatingPointPrinting_Double_interpolated", |
| 56 | + runFunction: run_FloatingPointPrinting_Double_interpolated, |
| 57 | + tags: [.validation, .api, .runtime, .String]), |
| 58 | + |
| 59 | + BenchmarkInfo( |
| 60 | + name: "FloatingPointPrinting_Float80_interpolated", |
| 61 | + runFunction: run_FloatingPointPrinting_Float80_interpolated, |
| 62 | + tags: [.validation, .api, .runtime, .String]) |
| 63 | +] |
| 64 | + |
| 65 | +// Generate descriptions for 100,000 values around 1.0. |
| 66 | +// |
| 67 | +// Note that some formatting algorithms behave very |
| 68 | +// differently for values around 1.0 than they do for |
| 69 | +// less-common extreme values. Having a "small" test |
| 70 | +// and a "uniform" test exercises both cases. |
| 71 | +// |
| 72 | +// Dividing integers 1...100000 by 101 (a prime) yields floating-point |
| 73 | +// values from about 1e-2 to about 1e3, each with plenty of digits after |
| 74 | +// the decimal: |
| 75 | + |
| 76 | +@inline(never) |
| 77 | +public func run_FloatingPointPrinting_Float_description_small(_ N: Int) { |
| 78 | + let count = 100_000 |
| 79 | + for _ in 0..<N { |
| 80 | + for i in 1...count { |
| 81 | + let f = Float(i) / 101.0 |
| 82 | + blackHole(f.description) |
| 83 | + } |
| 84 | + } |
| 85 | +} |
| 86 | + |
| 87 | +@inline(never) |
| 88 | +public func run_FloatingPointPrinting_Double_description_small(_ N: Int) { |
| 89 | + let count = 100_000 |
| 90 | + for _ in 0..<N { |
| 91 | + for i in 1...count { |
| 92 | + let f = Double(i) / 101.0 |
| 93 | + blackHole(f.description) |
| 94 | + } |
| 95 | + } |
| 96 | +} |
| 97 | + |
| 98 | +@inline(never) |
| 99 | +public func run_FloatingPointPrinting_Float80_description_small(_ N: Int) { |
| 100 | + let count = 100_000 |
| 101 | + for _ in 0..<N { |
| 102 | + for i in 1...count { |
| 103 | + let f = Float80(i) / 101.0 |
| 104 | + blackHole(f.description) |
| 105 | + } |
| 106 | + } |
| 107 | +} |
| 108 | + |
| 109 | +// Generate descriptions for 100,000 values spread evenly across |
| 110 | +// the full range of the type: |
| 111 | + |
| 112 | +@inline(never) |
| 113 | +public func run_FloatingPointPrinting_Float_description_uniform(_ N: Int) { |
| 114 | + let count = 100_000 |
| 115 | + let step = UInt32.max / UInt32(count) |
| 116 | + var s = "" |
| 117 | + for _ in 0..<N { |
| 118 | + for i in 0..<count { |
| 119 | + let raw = UInt32(i) * step |
| 120 | + let f = Float(bitPattern: raw) |
| 121 | + blackHole(f.description) |
| 122 | + } |
| 123 | + } |
| 124 | +} |
| 125 | + |
| 126 | +@inline(never) |
| 127 | +public func run_FloatingPointPrinting_Double_description_uniform(_ N: Int) { |
| 128 | + let count = 100_000 |
| 129 | + let step = UInt64.max / UInt64(count) |
| 130 | + var s = "" |
| 131 | + for _ in 0..<N { |
| 132 | + for i in 0..<count { |
| 133 | + let raw = UInt64(i) * step |
| 134 | + let f = Double(bitPattern: raw) |
| 135 | + blackHole(f.description) |
| 136 | + } |
| 137 | + } |
| 138 | +} |
| 139 | + |
| 140 | +@inline(never) |
| 141 | +public func run_FloatingPointPrinting_Float80_description_uniform(_ N: Int) { |
| 142 | + let count = 100_000 |
| 143 | + let step = UInt64.max / UInt64(count) |
| 144 | + var s = "" |
| 145 | + for _ in 0..<N { |
| 146 | + for i in 0..<count { |
| 147 | + let fraction = UInt64(i) * step |
| 148 | + let exponent = UInt(i) % 32768 |
| 149 | + let f = Float80(sign: .plus, exponentBitPattern: exponent, significandBitPattern: fraction) |
| 150 | + blackHole(f.description) |
| 151 | + } |
| 152 | + } |
| 153 | +} |
| 154 | + |
| 155 | +// The "interpolated" tests verify that any storage optimizations used while |
| 156 | +// producing the formatted numeric strings don't pessimize later use of the |
| 157 | +// result. |
| 158 | + |
| 159 | +@inline(never) |
| 160 | +public func run_FloatingPointPrinting_Float_interpolated(_ N: Int) { |
| 161 | + let count = 100_000 |
| 162 | + let step = UInt32.max / UInt32(count) |
| 163 | + var s = "" |
| 164 | + for _ in 0..<N { |
| 165 | + for i in 0..<count { |
| 166 | + let raw = UInt32(i) * step |
| 167 | + let f = Float(bitPattern: raw) |
| 168 | + blackHole("and the actual result was \(f)") |
| 169 | + } |
| 170 | + } |
| 171 | + CheckResults(s.count > 1) |
| 172 | +} |
| 173 | + |
| 174 | +@inline(never) |
| 175 | +public func run_FloatingPointPrinting_Double_interpolated(_ N: Int) { |
| 176 | + let count = 100_000 |
| 177 | + let step = UInt64.max / UInt64(count) |
| 178 | + var s = "" |
| 179 | + for _ in 0..<N { |
| 180 | + for i in 0..<count { |
| 181 | + let raw = UInt64(i) * step |
| 182 | + let f = Double(bitPattern: raw) |
| 183 | + blackHole("and the actual result was \(f)") |
| 184 | + } |
| 185 | + } |
| 186 | + CheckResults(s.count > 1) |
| 187 | +} |
| 188 | + |
| 189 | +@inline(never) |
| 190 | +public func run_FloatingPointPrinting_Float80_interpolated(_ N: Int) { |
| 191 | + let count = 100_000 |
| 192 | + let step = UInt64.max / UInt64(count) |
| 193 | + var s = "" |
| 194 | + for _ in 0..<N { |
| 195 | + for i in 0..<count { |
| 196 | + let fraction = UInt64(i) * step |
| 197 | + let exponent = UInt(i) % 32768 |
| 198 | + let f = Float80(sign: .plus, exponentBitPattern: exponent, significandBitPattern: fraction) |
| 199 | + blackHole("and the actual result was \(f)") |
| 200 | + } |
| 201 | + } |
| 202 | + CheckResults(s.count > 1) |
| 203 | +} |
| 204 | + |
0 commit comments