Skip to content

Commit 9d1470d

Browse files
authored
Merge pull request #26515 from eeckstein/memory-lifetime
2 parents 2a69e9c + fdcb46e commit 9d1470d

Some content is hidden

Large Commits have some content hidden by default. Use the searchbox below for content that may be hidden.

43 files changed

+1736
-83
lines changed

include/swift/SIL/ApplySite.h

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -264,7 +264,8 @@ class ApplySite {
264264
/// Returns true if \p oper is an argument operand and not the callee
265265
/// operand.
266266
bool isArgumentOperand(const Operand &oper) const {
267-
return oper.getOperandNumber() >= getOperandIndexOfFirstArgument();
267+
return oper.getOperandNumber() >= getOperandIndexOfFirstArgument() &&
268+
oper.getOperandNumber() < getOperandIndexOfFirstArgument() + getNumArguments();
268269
}
269270

270271
/// Return the applied argument index for the given operand.

include/swift/SIL/MemoryLifetime.h

Lines changed: 361 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,361 @@
1+
//===--- MemoryLifetime.h ---------------------------------------*- C++ -*-===//
2+
//
3+
// This source file is part of the Swift.org open source project
4+
//
5+
// Copyright (c) 2014 - 2019 Apple Inc. and the Swift project authors
6+
// Licensed under Apache License v2.0 with Runtime Library Exception
7+
//
8+
// See https://swift.org/LICENSE.txt for license information
9+
// See https://swift.org/CONTRIBUTORS.txt for the list of Swift project authors
10+
//
11+
//===----------------------------------------------------------------------===//
12+
///
13+
/// \file Contains utilities for calculating and verifying memory lifetime.
14+
///
15+
//===----------------------------------------------------------------------===//
16+
17+
#ifndef SWIFT_SIL_MEMORY_LIFETIME_H
18+
#define SWIFT_SIL_MEMORY_LIFETIME_H
19+
20+
#include "swift/SIL/SILBasicBlock.h"
21+
#include "swift/SIL/SILFunction.h"
22+
23+
namespace swift {
24+
25+
/// The MemoryLocations utility provides functions to analyze memory locations.
26+
///
27+
/// Memory locations are limited to addresses which are guaranteed to
28+
/// be not aliased, like @in/inout parameters and alloc_stack.
29+
/// Currently only a certain set of address instructions are supported:
30+
/// Specifically those instructions which are going to be included when SIL
31+
/// supports opaque values.
32+
/// TODO: Support more address instructions, like cast instructions.
33+
///
34+
/// The MemoryLocations works well together with MemoryDataflow, which can be
35+
/// used to calculate global dataflow of location information.
36+
class MemoryLocations {
37+
public:
38+
39+
using Bits = llvm::SmallBitVector;
40+
41+
/// Represents a not-aliased memory location: either an indirect function
42+
/// parameter or an alloc_stack.
43+
///
44+
/// Each location has a unique number which is index in the
45+
/// MemoryLifetime::locations array and the bit number in the bit sets.
46+
///
47+
/// Locations can have sub-locations in case the parent location is a struct
48+
/// or tuple with fields/elements. So, each top-level location forms a
49+
/// tree-like data structure. Sub-locations are only created lazily, i.e. if
50+
/// struct/tuple elements are really accessed with struct/tuple_element_addr.
51+
///
52+
/// As most alloc_stack locations only live within a single block, such
53+
/// single-block locations are not included in the "regular" data flow
54+
/// analysis (to not blow up the bit vectors). They are handled separately
55+
/// with a simple single-block data flow analysis, which runs independently
56+
/// for each block.
57+
struct Location {
58+
59+
/// The SIL value of the memory location.
60+
///
61+
/// For top-level locations this is either a function argument or an
62+
/// alloc_stack. For sub-locations it's the struct/tuple_element_addr.
63+
/// In case there are multiple struct/tuple_element_addr for a single
64+
/// field, this is only one representative instruction out of the set.
65+
SILValue representativeValue;
66+
67+
/// All tracked sub-locations.
68+
///
69+
/// If all tracked sub-locations cover the whole memory location, the "self"
70+
/// bit is not set. In other words: the "self" bit represents all
71+
/// sublocations, which are not explicitly tracked as locations.
72+
/// For example:
73+
/// \code
74+
/// struct Inner {
75+
/// var a: T
76+
/// var b: T
77+
/// }
78+
/// struct Outer {
79+
/// var x: T
80+
/// var y: Inner
81+
/// var z: T // not accessed in the analyzed function
82+
/// }
83+
/// \endcode
84+
///
85+
/// If the analyzed function contains:
86+
/// \code
87+
/// %a = alloc_stack $Outer // = location 0
88+
/// %ox = struct_element_adr %a, #Outer.x // = location 1
89+
/// %oy = struct_element_adr %a, #Outer.y // = location 2
90+
/// %ia = struct_element_adr %oy, #Inner.a // = location 3
91+
/// %ib = struct_element_adr %oy, #Inner.b // = location 4
92+
/// \endcode
93+
///
94+
/// the ``subLocations`` bits are:
95+
/// \code
96+
/// location 0 (alloc_stack): [0, 1, 3, 4]
97+
/// location 1 (Outer.x): [ 1 ]
98+
/// location 2 (Outer.y): [ 3, 4]
99+
/// location 3 (Inner.a): [ 3 ]
100+
/// location 4 (Inner.b): [ 4]
101+
/// \endcode
102+
///
103+
/// Bit 2 is never set because Inner is completly represented by its
104+
/// sub-locations 3 and 4. But bit 0 is set in location 0 (the "self" bit),
105+
/// because it represents the untracked field ``Outer.z``.
106+
Bits subLocations;
107+
108+
/// The accumulated parent bits, including the "self" bit.
109+
///
110+
/// For the example given for ``subLocations``, the ``selfAndParents`` bits
111+
/// are:
112+
/// \code
113+
/// location 0 (alloc_stack): [0 ]
114+
/// location 1 (Outer.x): [0, 1 ]
115+
/// location 2 (Outer.y): [0, 2 ]
116+
/// location 3 (Inner.a): [0, 2, 3 ]
117+
/// location 4 (Inner.b): [0, 2, 4]
118+
/// \endcode
119+
Bits selfAndParents;
120+
121+
/// The location index of the parent, or -1 if it's a top-level location.
122+
///
123+
/// For the example given for ``subLocations``, the ``parentIdx`` indices
124+
/// are:
125+
/// \code
126+
/// location 0 (alloc_stack): -1
127+
/// location 1 (Outer.x): 0
128+
/// location 2 (Outer.y): 0
129+
/// location 3 (Inner.a): 2
130+
/// location 4 (Inner.b): 2
131+
/// \endcode
132+
int parentIdx;
133+
134+
/// Used to decide if a location is completely covered by its sub-locations.
135+
///
136+
/// -1 means: not yet initialized.
137+
int numFieldsNotCoveredBySubfields = -1;
138+
139+
Location(SILValue val, unsigned index, int parentIdx = -1);
140+
};
141+
142+
private:
143+
/// The array of locations.
144+
llvm::SmallVector<Location, 64> locations;
145+
146+
/// Mapping from SIL values (function arguments and alloc_stack) to location
147+
/// indices.
148+
///
149+
/// In case there are multiple struct/tuple_element_addr for a single
150+
/// field, this map contains multiple entries mapping to the same location.
151+
llvm::DenseMap<SILValue, unsigned> addr2LocIdx;
152+
153+
/// Memory locations (e.g. alloc_stack) which live in a single basic block.
154+
///
155+
/// Those locations are excluded from the locations to keep the bit sets
156+
/// small. They can be handled separately with handleSingleBlockLocations().
157+
llvm::SmallVector<SingleValueInstruction *, 16> singleBlockLocations;
158+
159+
public:
160+
MemoryLocations() {}
161+
162+
MemoryLocations(const MemoryLocations &) = delete;
163+
MemoryLocations &operator=(const MemoryLocations &) = delete;
164+
165+
/// Returns the number of collected locations, except single-block locations.
166+
unsigned getNumLocations() const { return locations.size(); }
167+
168+
/// Returns the location index corresponding to a memory address or -1, if
169+
/// \p addr is not associated with a location.
170+
int getLocationIdx(SILValue addr) const;
171+
172+
/// Returns the location corresponding to a memory address or null, if
173+
/// \p addr is not associated with a location.
174+
const Location *getLocation(SILValue addr) const {
175+
int locIdx = getLocationIdx(addr);
176+
if (locIdx >= 0)
177+
return &locations[locIdx];
178+
return nullptr;
179+
}
180+
181+
/// Returns the location with a given \p index.
182+
const Location *getLocation(unsigned index) const {
183+
return &locations[index];
184+
}
185+
186+
/// Sets the location bits os \p addr in \p bits, if \p addr is associated
187+
/// with a location.
188+
void setBits(Bits &bits, SILValue addr) {
189+
if (auto *loc = getLocation(addr))
190+
bits |= loc->subLocations;
191+
}
192+
193+
/// Clears the location bits os \p addr in \p bits, if \p addr is associated
194+
/// with a location.
195+
void clearBits(Bits &bits, SILValue addr) {
196+
if (auto *loc = getLocation(addr))
197+
bits.reset(loc->subLocations);
198+
}
199+
200+
/// Analyzes all locations in a function.
201+
///
202+
/// Single-block locations are not analyzed, but added to singleBlockLocations.
203+
void analyzeLocations(SILFunction *function);
204+
205+
/// Analyze a single top-level location.
206+
///
207+
/// If all uses of \p loc are okay, the location and its sub-locations are
208+
/// added to the data structures.
209+
void analyzeLocation(SILValue loc);
210+
211+
/// Do a block-local processing for all locations in singleBlockLocations.
212+
///
213+
/// First, initializes all locations which are alive in a block and then
214+
/// calls \p handlerFunc for the block.
215+
void handleSingleBlockLocations(
216+
std::function<void (SILBasicBlock *block)> handlerFunc);
217+
218+
/// Debug dump the MemoryLifetime internals.
219+
void dump() const;
220+
221+
/// Debug dump a bit set .
222+
static void dumpBits(const Bits &bits);
223+
224+
private:
225+
/// Clears all datastructures, except singleBlockLocations;
226+
void clear();
227+
228+
// (locationIdx, fieldNr) -> subLocationIdx
229+
using SubLocationMap = llvm::DenseMap<std::pair<unsigned, unsigned>, unsigned>;
230+
231+
/// Helper function called by analyzeLocation to check all uses of the
232+
/// location recursively.
233+
///
234+
/// The \p subLocationMap is a temporary cache to speed up sub-location lookup.
235+
bool analyzeLocationUsesRecursively(SILValue V, unsigned locIdx,
236+
SmallVectorImpl<SILValue> &collectedVals,
237+
SubLocationMap &subLocationMap);
238+
239+
/// Helper function called by analyzeLocation to create a sub-location for
240+
/// and address projection and check all of its uses.
241+
bool analyzeAddrProjection(
242+
SingleValueInstruction *projection, unsigned parentLocIdx,unsigned fieldNr,
243+
SmallVectorImpl<SILValue> &collectedVals, SubLocationMap &subLocationMap);
244+
245+
/// Calculates Location::numFieldsNotCoveredBySubfields
246+
void initFieldsCounter(Location &loc);
247+
248+
/// Only memory locations which store a non-trivial type are considered.
249+
bool shouldTrackLocation(SILType type, SILFunction *inFunction) {
250+
return !type.isTrivial(*inFunction);
251+
}
252+
};
253+
254+
/// The MemoryDataflow utility calculates global dataflow of memory locations.
255+
///
256+
/// The MemoryDataflow works well together with MemoryLocations, which can be
257+
/// used to analyze locations as input to the dataflow.
258+
/// TODO: Actuall this utility can be used for any kind of dataflow, not just
259+
/// for memory locations. Consider renaming it.
260+
class MemoryDataflow {
261+
262+
public:
263+
using Bits = MemoryLocations::Bits;
264+
265+
/// Basic-block specific information used for dataflow analysis.
266+
struct BlockState {
267+
/// The backlink to the SILBasicBlock.
268+
SILBasicBlock *block;
269+
270+
/// The bits valid at the entry (i.e. the first instruction) of the block.
271+
Bits entrySet;
272+
273+
/// The bits valid at the exit (i.e. after the terminator) of the block.
274+
Bits exitSet;
275+
276+
/// Generated bits of the block.
277+
Bits genSet;
278+
279+
/// Killed bits of the block.
280+
Bits killSet;
281+
282+
/// True, if this block is reachable from the entry block, i.e. is not an
283+
/// unreachable block.
284+
///
285+
/// This flag is only computed if entryReachabilityAnalysis is called.
286+
bool reachableFromEntry = false;
287+
288+
/// True, if any function-exit block can be reached from this block, i.e. is
289+
/// not a block which eventually ends in an unreachable instruction.
290+
///
291+
/// This flag is only computed if exitReachableAnalysis is called.
292+
bool exitReachable = false;
293+
294+
BlockState(SILBasicBlock *block = nullptr) : block(block) { }
295+
296+
// Utility functions for setting and clearing gen- and kill-bits.
297+
298+
void genBits(SILValue addr, const MemoryLocations &locs) {
299+
if (auto *loc = locs.getLocation(addr)) {
300+
killSet.reset(loc->subLocations);
301+
genSet |= loc->subLocations;
302+
}
303+
}
304+
305+
void killBits(SILValue addr, const MemoryLocations &locs) {
306+
if (auto *loc = locs.getLocation(addr)) {
307+
genSet.reset(loc->subLocations);
308+
killSet |= loc->subLocations;
309+
}
310+
}
311+
};
312+
313+
private:
314+
/// All block states.
315+
std::vector<BlockState> blockStates;
316+
317+
/// Getting from SILBasicBlock to BlockState.
318+
llvm::DenseMap<SILBasicBlock *, BlockState *> block2State;
319+
320+
public:
321+
/// Sets up the BlockState datastructures and associates all basic blocks with
322+
/// a state.
323+
MemoryDataflow(SILFunction *function, unsigned numLocations);
324+
325+
MemoryDataflow(const MemoryDataflow &) = delete;
326+
MemoryDataflow &operator=(const MemoryDataflow &) = delete;
327+
328+
using iterator = std::vector<BlockState>::iterator;
329+
330+
iterator begin() { return blockStates.begin(); }
331+
iterator end() { return blockStates.end(); }
332+
333+
/// Returns the state of a block.
334+
BlockState *getState(SILBasicBlock *block) {
335+
return block2State[block];
336+
}
337+
338+
/// Calculates the BlockState::reachableFromEntry flags.
339+
void entryReachabilityAnalysis();
340+
341+
/// Calculates the BlockState::exitReachable flags.
342+
void exitReachableAnalysis();
343+
344+
/// Derives the block exit sets from the entry sets by applying the gen and
345+
/// kill sets.
346+
void solveDataflowForward();
347+
348+
/// Derives the block entry sets from the exit sets by applying the gen and
349+
/// kill sets.
350+
void solveDataflowBackward();
351+
352+
/// Debug dump the MemoryLifetime internals.
353+
void dump() const;
354+
};
355+
356+
/// Verifies the lifetime of memory locations in a function.
357+
void verifyMemoryLifetime(SILFunction *function);
358+
359+
} // end swift namespace
360+
361+
#endif

0 commit comments

Comments
 (0)