You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
[Explicit Module Builds] Ensure IRGen uses Swift compiler's target triple when '-clang-target' is set.
The Clang importer's Clang instance may be configured with a different (higher)
OS version than the compilation target itself in order to be able to load
pre-compiled Clang modules that are aligned with the broader SDK, and match the
SDK deployment target against which Swift modules are also built. In this case,
we must use the Swift compiler's OS version triple in order to generate the
binary as-requested.
This change makes 'ClangImporter' 'Implementation' keep track of a distinct
'TargetInfo' and 'CodeGenOpts' containers that are meant to be used by clients
in IRGen. When '-clang-target' is not set, they are defined to be copies of the
'ClangImporter's built-in module-loading Clang instance. When '-clang-target' is
set, they are configured with the Swift compilation's target triple and OS
version (but otherwise identical) instead. To distinguish IRGen clients from
module loading clients, 'getModuleAvailabilityTarget' is added for module
loading clients of 'ClangImporter'.
The notion of using a different triple for loading Clang modules arises for the
following reason:
- Swift is able to load Swift modules built against a different target triple
than the source module that is being compiled. Swift relies on availability
annotations on the API within the loaded modules to ensure that compilation
for the current target only uses appropriately-available API from its
dependencies.
- Clang, in contrast, requires that compilation only ever load modules (.pcm)
that are precisely aligned to the current source compilation. Because the
target triple (OS version in particular) between Swift source compilation and
Swift dependency module compilation may differ, this would otherwise result in
builtin multiple copies of the same Clang module, against different OS
versions, once for each different triple in the build graph.
Instead, with Explicitly-Built Modules, Swift sets a '-clang-target' argument
that ensures that all Clang modules participating in the build are built against
the SDK deployment target, matching the Swift modules in the SDK, which allows
them to expose a maximally-available API surface as required by
potentially-depending Swift modules' target OS version.
--------------------------------------------
For example:
Suppose we are building a source module 'Foo', targeting 'macosx10.0', using an
SDK with a deployment target of 'macosx12.0'. Swift modules in said SDK will be
built for 'macosx12.0' (as hard-coded in their textual interfaces), meaning they
may reference symbols expected to be present in dependency Clang modules at that
target OS version.
Suppose the source module 'Foo' depends on Swift module 'Bar', which then
depends on Clang module `Baz`. 'Bar' must be built targeting 'macosx12.0'
(SDK-matching deployment target is hard-coded into its textual interface). Which
means that 'Bar' expects 'Baz' to expose symbols that may only be available when
targeting at least 'macosx12.0'. e.g. 'Baz' may have symbols guarded with
'__MAC_OS_X_VERSION_MIN_REQUIRED >= __MAC_12_0'. For this reason, we use
'-clang-target' to ensure 'Baz' is built targeting 'macosx12.0', and can be
loaded by both 'Foo' and 'Bar'.
As a result, we cannot direclty use the Clang instance's target triple here and
must check if we need to instead use the triple of the Swift compiler instance.
Resolves rdar://109228963
0 commit comments