|
| 1 | +import CTensorFlow |
| 2 | + |
| 3 | +extension TFETensorHandle { |
| 4 | + var rank: Int { |
| 5 | + let status = _ExecutionContext.global.status |
| 6 | + let rank = TFE_TensorHandleNumDims(self._cTensorHandle, status) |
| 7 | + checkOk(status) |
| 8 | + return Int(rank) |
| 9 | + } |
| 10 | + |
| 11 | + var shape: TensorShape { |
| 12 | + let status = _ExecutionContext.global.status |
| 13 | + let dims: [Int] = (0..<Int32(rank)).map { i in |
| 14 | + let dim = TFE_TensorHandleDim(self._cTensorHandle, i, status) |
| 15 | + checkOk(status) |
| 16 | + return Int(dim) |
| 17 | + } |
| 18 | + return TensorShape(dims) |
| 19 | + } |
| 20 | +} |
| 21 | + |
| 22 | +extension LazyTensorHandle { |
| 23 | + var shape: TensorShape { |
| 24 | + switch handle { |
| 25 | + case .concrete(let h, _): return h.shape |
| 26 | + case .symbolic(let op, let index, _): return op.outputShapes[index] |
| 27 | + } |
| 28 | + } |
| 29 | +} |
| 30 | + |
| 31 | +extension TensorShape { |
| 32 | + var tfShape: TF_ShapeAndType { |
| 33 | + let int64_dimensions = dimensions.map { Int64($0) } |
| 34 | + let cArray = UnsafeMutableBufferPointer<Int64>.allocate(capacity: rank) |
| 35 | + let _ = cArray.initialize(from: int64_dimensions) |
| 36 | + return TF_ShapeAndType( |
| 37 | + num_dims: Int32(rank), |
| 38 | + dims: cArray.baseAddress, |
| 39 | + dtype: TF_DataType(rawValue: 0) /*TODO*/ |
| 40 | + ) |
| 41 | + } |
| 42 | +} |
| 43 | + |
| 44 | +extension LazyTensorOperation { |
| 45 | + private var tfeOp: TFE_Op { |
| 46 | + let op = TFE_Op(name, outputCount) |
| 47 | + for (name, value) in attributes { |
| 48 | + switch value { |
| 49 | + case .boolValue(let v): op.updateAttribute(name, v) |
| 50 | + case .intValue(let v): op.updateAttribute(name, v) |
| 51 | + case .floatValue(let v): op.updateAttribute(name, v) |
| 52 | + case .doubleValue(let v): op.updateAttribute(name, v) |
| 53 | + case .stringValue(let v): op.updateAttribute(name, v) |
| 54 | + case .boolArray(let v): op.updateAttribute(name, v) |
| 55 | + case .intArray(let v): op.updateAttribute(name, v) |
| 56 | + case .floatArray(let v): op.updateAttribute(name, v) |
| 57 | + case .doubleArray(let v): op.updateAttribute(name, v) |
| 58 | + case .stringArray(let v): op.updateAttribute(name, v) |
| 59 | + case .constTensor(_): fatalError("Const Tensor cannot be eager attribute.") |
| 60 | + case .tensorDataTypeValue(let v): op.updateAttribute(name, v) |
| 61 | + case .tensorDataTypeArray(let v): op.updateAttribute(name, v) |
| 62 | + case .optionalTensorShape(let v): op.updateAttribute(name, v) |
| 63 | + case .optionalTensorShapeArray(let v): op.updateAttribute(name, v) |
| 64 | + case .tensorFunctionPointer(_): fatalError("tensorFunctionPointer Unimplemented!") |
| 65 | + } |
| 66 | + } |
| 67 | + return op |
| 68 | + } |
| 69 | + |
| 70 | + private func updateOutputShapes() { |
| 71 | + let status = TF_NewStatus() |
| 72 | + defer { TF_DeleteStatus(status) } |
| 73 | + |
| 74 | + let inputShapes: [TensorShape] = inputs.map { |
| 75 | + switch $0 { |
| 76 | + case .single(let handle): return handle.shape |
| 77 | + case .list(_): fatalError("Unimplemented") |
| 78 | + } |
| 79 | + } |
| 80 | + |
| 81 | + let inputShapeList = TF_NewShapeAndTypeList(/*num_shapes*/ Int32(inputShapes.count)) |
| 82 | + for (i, shape) in inputShapes.enumerated() { |
| 83 | + let int64_dimensions = shape.dimensions.map { Int64($0) } |
| 84 | + int64_dimensions.withUnsafeBufferPointer { buffer in |
| 85 | + TF_ShapeAndTypeListSetShape( |
| 86 | + inputShapeList, |
| 87 | + /*index*/ Int32(i), |
| 88 | + buffer.baseAddress, |
| 89 | + Int32(int64_dimensions.count)) |
| 90 | + } |
| 91 | + } |
| 92 | + |
| 93 | + // This will be filled in by TFE_InferShapes. |
| 94 | + var outputShapeList = UnsafeMutablePointer<TF_ShapeAndTypeList>(nil) |
| 95 | + let tfeOp = self.tfeOp |
| 96 | + defer { |
| 97 | + TFE_DeleteOp(tfeOp.op) |
| 98 | + TF_DeleteStatus(tfeOp.status) |
| 99 | + } |
| 100 | + |
| 101 | + TFE_InferShapes( |
| 102 | + tfeOp.op, |
| 103 | + /*input_shapes*/ inputShapeList, |
| 104 | + /*input_tensors*/ nil, |
| 105 | + /*num_input_tensors*/ 0, |
| 106 | + /*input_tensors_as_shapes*/ nil, |
| 107 | + /*input_resource_shapes_and_types*/ nil, |
| 108 | + /*output_shapes*/ &outputShapeList, |
| 109 | + /*output_resource_shapes_and_types*/ nil, |
| 110 | + status) |
| 111 | + |
| 112 | + outputShapes = (0..<outputShapeList!.pointee.num_items).map { index -> TensorShape in |
| 113 | + let outputShape = outputShapeList!.pointee.items![Int(index)] |
| 114 | + let dims = (0..<outputShape.num_dims).map { Int(outputShape.dims![Int($0)]) } |
| 115 | + return TensorShape(dims) |
| 116 | + } |
| 117 | + for (i, outputShape) in outputShapes.enumerated() { |
| 118 | + print ("\(i): \(outputShape)") |
| 119 | + } |
| 120 | + |
| 121 | + TF_DeleteShapeAndTypeList(inputShapeList) |
| 122 | + TF_DeleteShapeAndTypeList(outputShapeList) |
| 123 | + } |
| 124 | + |
| 125 | +} |
0 commit comments