@@ -384,50 +384,48 @@ func _vjpAvgPool3D<Scalar: TensorFlowFloatingPoint>(
384
384
} )
385
385
}
386
386
387
- /// Computes a 2-D convolution using `self` as input, with the specified
388
- /// filter, strides, and padding.
387
+ /// Computes a 2-D convolution with the specified input, filter, strides, and padding.
389
388
///
390
389
/// - Parameters:
391
- /// - x : The input.
390
+ /// - input : The input.
392
391
/// - filter: The convolution filter.
393
392
/// - strides: The strides of the sliding filter for each dimension of the input.
394
393
/// - padding: The padding for the operation.
395
- /// - Precondition: `self ` must have rank 4 .
394
+ /// - Precondition: `input ` must have rank `4` .
396
395
/// - Precondition: `filter` must have rank 4.
397
- @differentiable ( wrt: ( x , filter) , vjp: _vjpConv2D)
396
+ @differentiable ( wrt: ( input , filter) , vjp: _vjpConv2D)
398
397
public func conv2D< Scalar: TensorFlowFloatingPoint > (
399
- _ x : Tensor < Scalar > ,
398
+ _ input : Tensor < Scalar > ,
400
399
filter: Tensor < Scalar > ,
401
400
strides: ( Int , Int , Int , Int ) ,
402
401
padding: Padding
403
402
) -> Tensor < Scalar > {
404
403
return Raw . conv2D (
405
- x ,
404
+ input ,
406
405
filter: filter,
407
406
strides: [ Int32 ( strides. 0 ) , Int32 ( strides. 1 ) , Int32 ( strides. 2 ) , Int32 ( strides. 3 ) ] ,
408
407
padding: padding. raw2,
409
408
explicitPaddings: [ ] )
410
409
}
411
410
412
- /// Computes a 3-D convolution using `self` as input, with the specified
413
- /// filter, strides, and padding.
411
+ /// Computes a 3-D convolution with the specified input, filter, strides, and padding.
414
412
///
415
413
/// - Parameters:
416
- /// - x : The input.
414
+ /// - input : The input.
417
415
/// - filter: The convolution filter.
418
416
/// - strides: The strides of the sliding filter for each dimension of the input.
419
417
/// - padding: The padding for the operation.
420
- /// - Precondition: `self ` must have rank 5 .
418
+ /// - Precondition: `input ` must have rank `5` .
421
419
/// - Precondition: `filter` must have rank 5.
422
- @differentiable ( wrt: ( x , filter) , vjp: _vjpConv3D)
420
+ @differentiable ( wrt: ( input , filter) , vjp: _vjpConv3D)
423
421
public func conv3D< Scalar: TensorFlowFloatingPoint > (
424
- _ x : Tensor < Scalar > ,
422
+ _ input : Tensor < Scalar > ,
425
423
filter: Tensor < Scalar > ,
426
424
strides: ( Int , Int , Int , Int , Int ) ,
427
425
padding: Padding
428
426
) -> Tensor < Scalar > {
429
427
return Raw . conv3D (
430
- x ,
428
+ input ,
431
429
filter: filter,
432
430
strides: [ Int32 ( strides. 0 ) , Int32 ( strides. 1 ) , Int32 ( strides. 2 ) ,
433
431
Int32 ( strides. 3 ) , Int32 ( strides. 4 ) ] ,
@@ -438,19 +436,19 @@ public func conv3D<Scalar: TensorFlowFloatingPoint>(
438
436
/// padding.
439
437
///
440
438
/// - Parameters:
441
- /// - x : The input.
439
+ /// - input : The input.
442
440
/// - filterSize: The dimensions of the pooling kernel.
443
441
/// - strides: The strides of the sliding filter for each dimension of the input.
444
442
/// - padding: The padding for the operation.
445
- @differentiable ( wrt: x , vjp: _vjpMaxPool2D)
443
+ @differentiable ( wrt: input , vjp: _vjpMaxPool2D)
446
444
public func maxPool2D< Scalar: TensorFlowFloatingPoint > (
447
- _ x : Tensor < Scalar > ,
445
+ _ input : Tensor < Scalar > ,
448
446
filterSize: ( Int , Int , Int , Int ) ,
449
447
strides: ( Int , Int , Int , Int ) ,
450
448
padding: Padding
451
449
) -> Tensor < Scalar > {
452
450
return Raw . maxPoolV2 (
453
- x ,
451
+ input ,
454
452
ksize: Tensor < Int32 > ( [ Int32 ( filterSize. 0 ) , Int32 ( filterSize. 1 ) ,
455
453
Int32 ( filterSize. 2 ) , Int32 ( filterSize. 3 ) ] ) ,
456
454
strides: Tensor < Int32 > ( [ Int32 ( strides. 0 ) , Int32 ( strides. 1 ) ,
@@ -462,19 +460,19 @@ public func maxPool2D<Scalar: TensorFlowFloatingPoint>(
462
460
/// padding.
463
461
///
464
462
/// - Parameters:
465
- /// - x : The input.
463
+ /// - input : The input.
466
464
/// - filterSize: The dimensions of the pooling kernel.
467
465
/// - strides: The strides of the sliding filter for each dimension of the input.
468
466
/// - padding: The padding for the operation.
469
- @differentiable ( wrt: x , vjp: _vjpMaxPool3D)
467
+ @differentiable ( wrt: input , vjp: _vjpMaxPool3D)
470
468
public func maxPool3D< Scalar: TensorFlowFloatingPoint > (
471
- _ x : Tensor < Scalar > ,
469
+ _ input : Tensor < Scalar > ,
472
470
filterSize: ( Int , Int , Int , Int , Int ) ,
473
471
strides: ( Int , Int , Int , Int , Int ) ,
474
472
padding: Padding
475
473
) -> Tensor < Scalar > {
476
474
return Raw . maxPool3D (
477
- x ,
475
+ input ,
478
476
ksize: [ Int32 ( filterSize. 0 ) , Int32 ( filterSize. 1 ) ,
479
477
Int32 ( filterSize. 2 ) , Int32 ( filterSize. 3 ) , Int32 ( filterSize. 4 ) ] ,
480
478
strides: [ Int32 ( strides. 0 ) , Int32 ( strides. 1 ) ,
@@ -486,19 +484,19 @@ public func maxPool3D<Scalar: TensorFlowFloatingPoint>(
486
484
/// and padding.
487
485
///
488
486
/// - Parameters:
489
- /// - x : The input.
487
+ /// - input : The input.
490
488
/// - filterSize: The dimensions of the pooling kernel.
491
489
/// - strides: The strides of the sliding filter for each dimension of the input.
492
490
/// - padding: The padding for the operation.
493
- @differentiable ( wrt: x , vjp: _vjpAvgPool2D)
491
+ @differentiable ( wrt: input , vjp: _vjpAvgPool2D)
494
492
public func avgPool2D< Scalar: TensorFlowFloatingPoint > (
495
- _ x : Tensor < Scalar > ,
493
+ _ input : Tensor < Scalar > ,
496
494
filterSize: ( Int , Int , Int , Int ) ,
497
495
strides: ( Int , Int , Int , Int ) ,
498
496
padding: Padding
499
497
) -> Tensor < Scalar > {
500
498
return Raw . avgPool (
501
- value: x ,
499
+ value: input ,
502
500
ksize: [ Int32 ( filterSize. 0 ) , Int32 ( filterSize. 1 ) ,
503
501
Int32 ( filterSize. 2 ) , Int32 ( filterSize. 3 ) ] ,
504
502
strides: [ Int32 ( strides. 0 ) , Int32 ( strides. 1 ) , Int32 ( strides. 2 ) , Int32 ( strides. 3 ) ] ,
@@ -509,19 +507,19 @@ public func avgPool2D<Scalar: TensorFlowFloatingPoint>(
509
507
/// and padding.
510
508
///
511
509
/// - Parameters:
512
- /// - x : The input.
510
+ /// - input : The input.
513
511
/// - filterSize: The dimensions of the pooling kernel.
514
512
/// - strides: The strides of the sliding filter for each dimension of the input.
515
513
/// - padding: The padding for the operation.
516
- @differentiable ( wrt: x , vjp: _vjpAvgPool3D)
514
+ @differentiable ( wrt: input , vjp: _vjpAvgPool3D)
517
515
public func avgPool3D< Scalar: TensorFlowFloatingPoint > (
518
- _ x : Tensor < Scalar > ,
516
+ _ input : Tensor < Scalar > ,
519
517
filterSize: ( Int , Int , Int , Int , Int ) ,
520
518
strides: ( Int , Int , Int , Int , Int ) ,
521
519
padding: Padding
522
520
) -> Tensor < Scalar > {
523
521
return Raw . avgPool3D (
524
- x ,
522
+ input ,
525
523
ksize: [ Int32 ( filterSize. 0 ) , Int32 ( filterSize. 1 ) ,
526
524
Int32 ( filterSize. 2 ) , Int32 ( filterSize. 3 ) , Int32 ( filterSize. 4 ) ] ,
527
525
strides: [ Int32 ( strides. 0 ) , Int32 ( strides. 1 ) , Int32 ( strides. 2 ) , Int32 ( strides. 3 ) ,
0 commit comments