|
| 1 | +#! /usr/bin/python |
| 2 | +# -*- coding: utf-8 -*- |
| 3 | + |
| 4 | +import time |
| 5 | +import tensorflow as tf |
| 6 | +import tensorlayer as tl |
| 7 | +import tensorflow.contrib.slim as slim |
| 8 | +from tensorlayer.layers import * |
| 9 | + |
| 10 | +X_train, y_train, X_val, y_val, X_test, y_test = tl.files.load_mnist_dataset(shape=(-1, 784)) |
| 11 | + |
| 12 | +sess = tf.InteractiveSession() |
| 13 | + |
| 14 | +batch_size = 128 |
| 15 | +x = tf.placeholder(tf.float32, shape=[None, 784]) |
| 16 | +y_ = tf.placeholder(tf.int64, shape=[None]) |
| 17 | +is_training = tf.placeholder(tf.bool) |
| 18 | + |
| 19 | + |
| 20 | +def slim_block(x): |
| 21 | + with tf.variable_scope('tf_slim'): |
| 22 | + x = slim.dropout(x, 0.8, is_training=is_training) |
| 23 | + x = slim.fully_connected(x, 800, activation_fn=tf.nn.relu) |
| 24 | + x = slim.dropout(x, 0.5, is_training=is_training) |
| 25 | + x = slim.fully_connected(x, 800, activation_fn=tf.nn.relu) |
| 26 | + x = slim.dropout(x, 0.5, is_training=is_training) |
| 27 | + logits = slim.fully_connected(x, 10, activation_fn=tf.identity) |
| 28 | + return logits, {} |
| 29 | + |
| 30 | + |
| 31 | +network = InputLayer(x, name='input') |
| 32 | +network = SlimNetsLayer(network, slim_layer=slim_block, name='tf_slim') |
| 33 | + |
| 34 | +y = network.outputs |
| 35 | +network.print_params(False) |
| 36 | +network.print_layers() |
| 37 | + |
| 38 | +cost = tl.cost.cross_entropy(y, y_, 'cost') |
| 39 | +correct_prediction = tf.equal(tf.argmax(y, 1), y_) |
| 40 | +acc = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) |
| 41 | + |
| 42 | +n_epoch = 200 |
| 43 | +learning_rate = 0.0001 |
| 44 | + |
| 45 | +train_params = network.all_params |
| 46 | +train_op = tf.train.AdamOptimizer(learning_rate).minimize(cost, var_list=train_params) |
| 47 | + |
| 48 | +tl.layers.initialize_global_variables(sess) |
| 49 | + |
| 50 | +for epoch in range(n_epoch): |
| 51 | + start_time = time.time() |
| 52 | + ## Training |
| 53 | + for X_train_a, y_train_a in tl.iterate.minibatches(X_train, y_train, batch_size, shuffle=True): |
| 54 | + _, _ = sess.run([cost, train_op], feed_dict={x: X_train_a, y_: y_train_a, is_training: True}) |
| 55 | + |
| 56 | + print("Epoch %d of %d took %fs" % (epoch + 1, n_epoch, time.time() - start_time)) |
| 57 | + ## Evaluation |
| 58 | + train_loss, train_acc, n_batch = 0, 0, 0 |
| 59 | + for X_train_a, y_train_a in tl.iterate.minibatches(X_train, y_train, batch_size, shuffle=False): |
| 60 | + err, ac = sess.run([cost, acc], feed_dict={x: X_train_a, y_: y_train_a, is_training: False}) |
| 61 | + train_loss += err |
| 62 | + train_acc += ac |
| 63 | + n_batch += 1 |
| 64 | + print(" train loss: %f" % (train_loss / n_batch)) |
| 65 | + print(" train acc: %f" % (train_acc / n_batch)) |
| 66 | + val_loss, val_acc, n_batch = 0, 0, 0 |
| 67 | + for X_val_a, y_val_a in tl.iterate.minibatches(X_val, y_val, batch_size, shuffle=False): |
| 68 | + err, ac = sess.run([cost, acc], feed_dict={x: X_val_a, y_: y_val_a, is_training: False}) |
| 69 | + val_loss += err |
| 70 | + val_acc += ac |
| 71 | + n_batch += 1 |
| 72 | + print(" val loss: %f" % (val_loss / n_batch)) |
| 73 | + print(" val acc: %f" % (val_acc / n_batch)) |
0 commit comments