Skip to content

Commit 40101e0

Browse files
committed
Edits for clarity in docs
1 parent a5fc49b commit 40101e0

File tree

6 files changed

+66
-63
lines changed

6 files changed

+66
-63
lines changed

man/linear_reg.Rd

Lines changed: 11 additions & 11 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

man/logistic_reg.Rd

Lines changed: 11 additions & 11 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

man/multinom_reg.Rd

Lines changed: 11 additions & 11 deletions
Some generated files are not rendered by default. Learn more about customizing how changed files appear on GitHub.

man/rmd/linear-reg.Rmd

Lines changed: 10 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -21,12 +21,12 @@ linear_reg(penalty = 0.1) %>%
2121
translate()
2222
```
2323

24-
`linear_reg()` requires a single value for the `penalty` argument (a number
25-
or `tune()`). Despite this, the full regularization path is always fit
24+
The glmnet engine requires a single value for the `penalty` argument (a number
25+
or `tune()`), but the full regularization path is always fit
2626
regardless of the value given to `penalty`. To pass in a custom sequence of
27-
values for `lambda`, use the argument `path_values` in `set_engine()`. This
28-
will assign the value of the glmnet `lambda` parameter without disturbing
29-
the value given in `linear_reg(penalty)`. For example:
27+
values for glmnet's `lambda`, use the argument `path_values` in `set_engine()`.
28+
This will assign the value of the glmnet `lambda` parameter without disturbing
29+
the value given of `linear_reg(penalty)`. For example:
3030

3131
```{r glmnet-path}
3232
linear_reg(penalty = .1) %>%
@@ -38,12 +38,12 @@ When fitting a pure ridge regression model (i.e., `penalty = 0`), we _strongly
3838
suggest_ that you pass in a vector for `path_values` that includes zero. See
3939
[issue #431](https://github.com/tidymodels/parsnip/issues/431) for a discussion.
4040

41-
When using `predict()`, the single penalty value used for prediction is the one
42-
given to `linear_reg()`.
41+
When using `predict()`, the single `penalty` value used for prediction is the
42+
one specified in `linear_reg()`.
4343

44-
To predict on multiple penalties, the `multi_predict()` function can be used.
45-
It returns a tibble with a list column called `.pred` that contains a tibble
46-
with all of the penalty results.
44+
To predict on multiple penalties, use the `multi_predict()` function.
45+
This function returns a tibble with a list column called `.pred` containing
46+
all of the penalty results.
4747

4848
## stan
4949

man/rmd/logistic-reg.Rmd

Lines changed: 11 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -22,12 +22,12 @@ logistic_reg(penalty = 0.1) %>%
2222
translate()
2323
```
2424

25-
`logistic_reg()` requires a single value for the `penalty` argument (a number
26-
or `tune()`). Despite this, the full regularization path is always fit
25+
The glmnet engine requires a single value for the `penalty` argument (a number
26+
or `tune()`), but the full regularization path is always fit
2727
regardless of the value given to `penalty`. To pass in a custom sequence of
28-
values for `lambda`, use the argument `path_values` in `set_engine()`. This
29-
will assign the value of the glmnet `lambda` parameter without disturbing
30-
the value given in `logistic_reg(penalty)`. For example:
28+
values for glmnet's `lambda`, use the argument `path_values` in `set_engine()`.
29+
This will assign the value of the glmnet `lambda` parameter without disturbing
30+
the value given of `logistic_reg(penalty)`. For example:
3131

3232
```{r glmnet-path}
3333
logistic_reg(penalty = .1) %>%
@@ -39,12 +39,13 @@ When fitting a pure ridge regression model (i.e., `penalty = 0`), we _strongly
3939
suggest_ that you pass in a vector for `path_values` that includes zero. See
4040
[issue #431](https://github.com/tidymodels/parsnip/issues/431) for a discussion.
4141

42-
When using `predict()`, the single penalty value used for prediction is the one
43-
given to `logistic_reg()`.
42+
When using `predict()`, the single `penalty` value used for prediction is the
43+
one specified in `logistic_reg()`.
44+
45+
To predict on multiple penalties, use the `multi_predict()` function.
46+
This function returns a tibble with a list column called `.pred` containing
47+
all of the penalty results.
4448

45-
To predict on multiple penalties, the `multi_predict()` function can be used.
46-
It returns a tibble with a list column called `.pred` that contains a tibble
47-
with all of the penalty results.
4849

4950
## LiblineaR
5051

man/rmd/multinom-reg.Rmd

Lines changed: 12 additions & 10 deletions
Original file line numberDiff line numberDiff line change
@@ -14,12 +14,13 @@ multinom_reg(penalty = 0.1) %>%
1414
translate()
1515
```
1616

17-
`multinom_reg()` requires a single value for the `penalty` argument (a number
18-
or `tune()`). Despite this, the full regularization path is always fit
17+
The glmnet engine requires a single value for the `penalty` argument (a number
18+
or `tune()`), but the full regularization path is always fit
1919
regardless of the value given to `penalty`. To pass in a custom sequence of
20-
values for `lambda`, use the argument `path_values` in `set_engine()`. This
21-
will assign the value of the glmnet `lambda` parameter without disturbing
22-
the value given in `multinom_reg(penalty)`. For example:
20+
values for glmnet's `lambda`, use the argument `path_values` in `set_engine()`.
21+
This will assign the value of the glmnet `lambda` parameter without disturbing
22+
the value given of `multinom_reg(penalty)`. For example:
23+
2324

2425
```{r glmnet-path}
2526
multinom_reg(penalty = .1) %>%
@@ -31,12 +32,13 @@ When fitting a pure ridge regression model (i.e., `penalty = 0`), we _strongly
3132
suggest_ that you pass in a vector for `path_values` that includes zero. See
3233
[issue #431](https://github.com/tidymodels/parsnip/issues/431) for a discussion.
3334

34-
When using `predict()`, the single penalty value used for prediction is the one
35-
given to `multinom_reg()`.
35+
When using `predict()`, the single `penalty` value used for prediction is the
36+
one specified in `multinom_reg()`.
37+
38+
To predict on multiple penalties, use the `multi_predict()` function.
39+
This function returns a tibble with a list column called `.pred` containing
40+
all of the penalty results.
3641

37-
To predict on multiple penalties, the `multi_predict()` function can be used.
38-
It returns a tibble with a list column called `.pred` that contains a tibble
39-
with all of the penalty results.
4042

4143
## nnet
4244

0 commit comments

Comments
 (0)