@@ -132,14 +132,15 @@ test_that('kknn multi-predict', {
132
132
)
133
133
134
134
pred_multi <- multi_predict(res_xy , iris [iris_te , num_pred ], neighbors = k_vals )
135
- expect_equal(pred_multi %> % unnest() %> % nrow(), length(iris_te ) * length(k_vals ))
135
+ expect_equal(pred_multi %> % unnest(cols = c(.pred )) %> % nrow(),
136
+ length(iris_te ) * length(k_vals ))
136
137
expect_equal(pred_multi %> % nrow(), length(iris_te ))
137
138
138
139
pred_uni <- predict(res_xy , iris [iris_te , num_pred ])
139
140
pred_uni_obs <-
140
141
pred_multi %> %
141
142
mutate(.rows = row_number()) %> %
142
- unnest() %> %
143
+ unnest(cols = c( .pred ) ) %> %
143
144
dplyr :: filter(neighbors == 3 ) %> %
144
145
arrange(.rows ) %> %
145
146
dplyr :: select(.pred_class )
@@ -148,14 +149,15 @@ test_that('kknn multi-predict', {
148
149
149
150
prob_multi <- multi_predict(res_xy , iris [iris_te , num_pred ],
150
151
neighbors = k_vals , type = " prob" )
151
- expect_equal(prob_multi %> % unnest() %> % nrow(), length(iris_te ) * length(k_vals ))
152
+ expect_equal(prob_multi %> % unnest(cols = c(.pred )) %> % nrow(),
153
+ length(iris_te ) * length(k_vals ))
152
154
expect_equal(prob_multi %> % nrow(), length(iris_te ))
153
155
154
156
prob_uni <- predict(res_xy , iris [iris_te , num_pred ], type = " prob" )
155
157
prob_uni_obs <-
156
158
prob_multi %> %
157
159
mutate(.rows = row_number()) %> %
158
- unnest() %> %
160
+ unnest(cols = c( .pred ) ) %> %
159
161
dplyr :: filter(neighbors == 3 ) %> %
160
162
arrange(.rows ) %> %
161
163
dplyr :: select(!! names(prob_uni ))
@@ -175,14 +177,15 @@ test_that('kknn multi-predict', {
175
177
)
176
178
177
179
pred_multi <- multi_predict(res_xy , mtcars [cars_te , - 1 ], neighbors = k_vals )
178
- expect_equal(pred_multi %> % unnest() %> % nrow(), length(cars_te ) * length(k_vals ))
180
+ expect_equal(pred_multi %> % unnest(cols = c(.pred )) %> % nrow(),
181
+ length(cars_te ) * length(k_vals ))
179
182
expect_equal(pred_multi %> % nrow(), length(cars_te ))
180
183
181
184
pred_uni <- predict(res_xy , mtcars [cars_te , - 1 ])
182
185
pred_uni_obs <-
183
186
pred_multi %> %
184
187
mutate(.rows = row_number()) %> %
185
- unnest() %> %
188
+ unnest(cols = c( .pred ) ) %> %
186
189
dplyr :: filter(neighbors == 3 ) %> %
187
190
arrange(.rows ) %> %
188
191
dplyr :: select(.pred )
0 commit comments