|
| 1 | +context("geom-quantile") |
| 2 | + |
| 3 | +test_that("geom_quantile matches quantile regression", { |
| 4 | + set.seed(6531) |
| 5 | + x <- rnorm(10) |
| 6 | + df <- tibble::tibble( |
| 7 | + x = x, |
| 8 | + y = x^2 + 0.5 * rnorm(10) |
| 9 | + ) |
| 10 | + |
| 11 | + ps <- ggplot(df, aes(x, y)) + geom_quantile() |
| 12 | + |
| 13 | + quants <- c(0.25, 0.5, 0.75) |
| 14 | + |
| 15 | + pred_rq <- predict( |
| 16 | + quantreg::rq(y ~ x, |
| 17 | + tau = quants, |
| 18 | + data = df |
| 19 | + ), |
| 20 | + tibble::tibble( |
| 21 | + x = seq(min(x), max(x), length = 100) |
| 22 | + ) |
| 23 | + ) |
| 24 | + |
| 25 | + pred_rq <- cbind(seq(min(x), max(x), length = 100), pred_rq) |
| 26 | + colnames(pred_rq) <- c("x", paste("Q", quants * 100, sep = "_")) |
| 27 | + |
| 28 | + ggplot_data <- tibble::as_tibble(layer_data(ps)) |
| 29 | + |
| 30 | + pred_rq_test_25 <- pred_rq[, c("x", "Q_25")] |
| 31 | + colnames(pred_rq_test_25) <- c("x", "y") |
| 32 | + |
| 33 | + expect_equal( |
| 34 | + ggplot_data[ggplot_data$quantile == 0.25, c("x", "y")], |
| 35 | + pred_rq_test_25 |
| 36 | + ) |
| 37 | + |
| 38 | + pred_rq_test_50 <- pred_rq[, c("x", "Q_50")] |
| 39 | + colnames(pred_rq_test_50) <- c("x", "y") |
| 40 | + |
| 41 | + expect_equal( |
| 42 | + ggplot_data[ggplot_data$quantile == 0.5, c("x", "y")], |
| 43 | + pred_rq_test_50 |
| 44 | + ) |
| 45 | + |
| 46 | + pred_rq_test_75 <- pred_rq[, c("x", "Q_75")] |
| 47 | + colnames(pred_rq_test_75) <- c("x", "y") |
| 48 | + |
| 49 | + expect_equal( |
| 50 | + ggplot_data[ggplot_data$quantile == 0.75, c("x", "y")], |
| 51 | + pred_rq_test_75 |
| 52 | + ) |
| 53 | +}) |
0 commit comments