Skip to content

Commit 41b4171

Browse files
committed
Reapply "CUDA: batched+noncont MMQ, refactor bs>1 MoE code (ggml-org#13199)"
This reverts commit 1076cf9.
1 parent 1076cf9 commit 41b4171

File tree

9 files changed

+858
-429
lines changed

9 files changed

+858
-429
lines changed

ggml/src/ggml-cuda/getrows.cu

Lines changed: 105 additions & 66 deletions
Original file line numberDiff line numberDiff line change
@@ -33,8 +33,8 @@ static __global__ void k_get_rows(
3333
dfloat2 v;
3434
dequantize_kernel(src0_row, ib, iqs, v);
3535

36-
dst_row[iybs + iqs + 0] = v.x;
37-
dst_row[iybs + iqs + y_offset] = v.y;
36+
dst_row[iybs + iqs + 0] = float(v.x);
37+
dst_row[iybs + iqs + y_offset] = float(v.y);
3838
}
3939

4040
template<typename src0_t, typename dst_t>
@@ -60,7 +60,7 @@ static __global__ void k_get_rows_float(
6060
dst_t * dst_row = dst + i10*s1 + i11*s2 + i12*s3;
6161
const src0_t * src0_row = (const src0_t *)((const char *) src0 + i01*nb01 + i11*nb02 + i12*nb03);
6262

63-
dst_row[i00] = src0_row[i00];
63+
dst_row[i00] = float(src0_row[i00]);
6464
}
6565

6666
template<typename grad_t, typename dst_t>
@@ -86,122 +86,161 @@ static __global__ void k_get_rows_back_float(
8686
dst[dst_row*ncols + col] = sum;
8787
}
8888

89-
template<int qk, int qr, dequantize_kernel_t dq>
90-
static void get_rows_cuda(
91-
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
92-
const void * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
93-
94-
GGML_TENSOR_BINARY_OP_LOCALS
95-
89+
template<int qk, int qr, dequantize_kernel_t dq, typename dst_t>
90+
static void get_rows_cuda_q(
91+
const void * src0_d, const int32_t * src1_d, dst_t * dst_d,
92+
const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
93+
const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
94+
const size_t nb1, const size_t nb2, const size_t nb3,
95+
cudaStream_t stream) {
9696
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
9797
const int block_num_x = (ne00 + 2*CUDA_GET_ROWS_BLOCK_SIZE - 1) / (2*CUDA_GET_ROWS_BLOCK_SIZE);
9898
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
9999

100100
// strides in elements
101-
//const size_t s0 = nb0 / ggml_element_size(dst);
102-
const size_t s1 = nb1 / ggml_element_size(dst);
103-
const size_t s2 = nb2 / ggml_element_size(dst);
104-
const size_t s3 = nb3 / ggml_element_size(dst);
101+
// const size_t s0 = nb0 / sizeof(dst_t);
102+
const size_t s1 = nb1 / sizeof(dst_t);
103+
const size_t s2 = nb2 / sizeof(dst_t);
104+
const size_t s3 = nb3 / sizeof(dst_t);
105105

106-
const size_t s10 = nb10 / ggml_element_size(src1);
107-
const size_t s11 = nb11 / ggml_element_size(src1);
108-
const size_t s12 = nb12 / ggml_element_size(src1);
109-
//const size_t s13 = nb13 / ggml_element_size(src1);
106+
const size_t s10 = nb10 / sizeof(int32_t);
107+
const size_t s11 = nb11 / sizeof(int32_t);
108+
const size_t s12 = nb12 / sizeof(int32_t);
109+
// const size_t s13 = nb13 / sizeof(int32_t);
110110

111111
GGML_ASSERT(ne00 % 2 == 0);
112112

113113
k_get_rows<qk, qr, dq><<<block_nums, block_dims, 0, stream>>>(
114-
src0_dd, src1_dd, dst_dd,
114+
src0_d, src1_d, dst_d,
115115
ne00, /*ne01, ne02, ne03,*/
116116
/*ne10, ne11,*/ ne12, /*ne13,*/
117117
/* s0,*/ s1, s2, s3,
118118
/* nb00,*/ nb01, nb02, nb03,
119119
s10, s11, s12/*, s13*/);
120-
121-
GGML_UNUSED(dst);
122120
}
123121

124-
template<typename src0_t>
122+
template<typename src0_t, typename dst_t>
125123
static void get_rows_cuda_float(
126-
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst,
127-
const src0_t * src0_dd, const int32_t * src1_dd, float * dst_dd, cudaStream_t stream) {
128-
129-
GGML_TENSOR_BINARY_OP_LOCALS
130-
131-
GGML_ASSERT(ne13 == 1);
132-
124+
const src0_t * src0_d, const int32_t * src1_d, dst_t * dst_d,
125+
const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
126+
const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
127+
const size_t nb1, const size_t nb2, const size_t nb3,
128+
cudaStream_t stream) {
133129
const dim3 block_dims(CUDA_GET_ROWS_BLOCK_SIZE, 1, 1);
134130
const int block_num_x = (ne00 + CUDA_GET_ROWS_BLOCK_SIZE - 1) / CUDA_GET_ROWS_BLOCK_SIZE;
135131
const dim3 block_nums(block_num_x, ne10, ne11*ne12);
136132

137133
// strides in elements
138-
//const size_t s0 = nb0 / ggml_element_size(dst);
139-
const size_t s1 = nb1 / ggml_element_size(dst);
140-
const size_t s2 = nb2 / ggml_element_size(dst);
141-
const size_t s3 = nb3 / ggml_element_size(dst);
134+
// const size_t s0 = nb0 / sizeof(dst_t);
135+
const size_t s1 = nb1 / sizeof(dst_t);
136+
const size_t s2 = nb2 / sizeof(dst_t);
137+
const size_t s3 = nb3 / sizeof(dst_t);
142138

143-
const size_t s10 = nb10 / ggml_element_size(src1);
144-
const size_t s11 = nb11 / ggml_element_size(src1);
145-
const size_t s12 = nb12 / ggml_element_size(src1);
146-
//const size_t s13 = nb13 / ggml_element_size(src1);
139+
const size_t s10 = nb10 / sizeof(int32_t);
140+
const size_t s11 = nb11 / sizeof(int32_t);
141+
const size_t s12 = nb12 / sizeof(int32_t);
142+
// const size_t s13 = nb13 / sizeof(int32_t);
147143

148144
k_get_rows_float<<<block_nums, block_dims, 0, stream>>>(
149-
src0_dd, src1_dd, dst_dd,
145+
src0_d, src1_d, dst_d,
150146
ne00, /*ne01, ne02, ne03,*/
151147
/*ne10, ne11,*/ ne12, /*ne13,*/
152148
/* s0,*/ s1, s2, s3,
153149
/* nb00,*/ nb01, nb02, nb03,
154150
s10, s11, s12/*, s13*/);
155-
156-
GGML_UNUSED(dst);
157151
}
158152

159-
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
160-
const ggml_tensor * src0 = dst->src[0];
161-
const ggml_tensor * src1 = dst->src[1];
162-
163-
const void * src0_d = (const void *) src0->data;
164-
const int32_t * src1_d = (const int32_t *) src1->data;
165-
float * dst_d = (float *) dst->data;
166-
167-
cudaStream_t stream = ctx.stream();
168-
169-
GGML_ASSERT(src1->type == GGML_TYPE_I32);
170-
GGML_ASSERT(dst->type == GGML_TYPE_F32);
171-
172-
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
173-
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
174-
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
175-
176-
switch (src0->type) {
153+
template <typename dst_t>
154+
static void ggml_cuda_get_rows_switch_src0_type(
155+
const void * src0_d, const ggml_type src0_type, const int32_t * src1_d, dst_t * dst_d,
156+
const int64_t ne00, const size_t nb01, const size_t nb02, const size_t nb03,
157+
const int64_t ne10, const int64_t ne11, const int64_t ne12, const size_t nb10, const size_t nb11, const size_t nb12,
158+
const size_t nb1, const size_t nb2, const size_t nb3,
159+
cudaStream_t stream) {
160+
switch (src0_type) {
177161
case GGML_TYPE_F16:
178-
get_rows_cuda_float(src0, src1, dst, (const half *) src0_d, src1_d, dst_d, stream);
162+
get_rows_cuda_float((const half *) src0_d, src1_d, dst_d,
163+
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
179164
break;
180165
case GGML_TYPE_F32:
181-
get_rows_cuda_float(src0, src1, dst, (const float *) src0_d, src1_d, dst_d, stream);
166+
get_rows_cuda_float((const float *) src0_d, src1_d, dst_d,
167+
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
168+
break;
169+
case GGML_TYPE_BF16:
170+
get_rows_cuda_float((const nv_bfloat16 *) src0_d, src1_d, dst_d,
171+
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
182172
break;
183173
case GGML_TYPE_Q4_0:
184-
get_rows_cuda<QK4_0, QR4_0, dequantize_q4_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
174+
get_rows_cuda_q<QK4_0, QR4_0, dequantize_q4_0>(src0_d, src1_d, dst_d,
175+
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
185176
break;
186177
case GGML_TYPE_Q4_1:
187-
get_rows_cuda<QK4_1, QR4_1, dequantize_q4_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
178+
get_rows_cuda_q<QK4_1, QR4_1, dequantize_q4_1>(src0_d, src1_d, dst_d,
179+
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
188180
break;
189181
case GGML_TYPE_Q5_0:
190-
get_rows_cuda<QK5_0, QR5_0, dequantize_q5_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
182+
get_rows_cuda_q<QK5_0, QR5_0, dequantize_q5_0>(src0_d, src1_d, dst_d,
183+
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
191184
break;
192185
case GGML_TYPE_Q5_1:
193-
get_rows_cuda<QK5_1, QR5_1, dequantize_q5_1>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
186+
get_rows_cuda_q<QK5_1, QR5_1, dequantize_q5_1>(src0_d, src1_d, dst_d,
187+
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
194188
break;
195189
case GGML_TYPE_Q8_0:
196-
get_rows_cuda<QK8_0, QR8_0, dequantize_q8_0>(src0, src1, dst, src0_d, src1_d, dst_d, stream);
190+
get_rows_cuda_q<QK8_0, QR8_0, dequantize_q8_0>(src0_d, src1_d, dst_d,
191+
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
197192
break;
198193
default:
199194
// TODO: k-quants
200-
GGML_ABORT("%s: unsupported type: %s\n", __func__, ggml_type_name(src0->type));
195+
GGML_ABORT("%s: unsupported src0 type: %s\n", __func__, ggml_type_name(src0_type));
201196
break;
202197
}
203198
}
204199

200+
void get_rows_cuda(
201+
const void * src0_d, ggml_type src0_type, const int32_t * src1_d, void * dst_d, ggml_type dst_type,
202+
int64_t ne00, size_t nb01, size_t nb02, size_t nb03,
203+
int64_t ne10, int64_t ne11, int64_t ne12, size_t nb10, size_t nb11, size_t nb12,
204+
size_t nb1, size_t nb2, size_t nb3,
205+
cudaStream_t stream) {
206+
switch (dst_type) {
207+
case GGML_TYPE_F32:
208+
ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (float *) dst_d,
209+
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
210+
break;
211+
case GGML_TYPE_F16:
212+
ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (half *) dst_d,
213+
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
214+
break;
215+
case GGML_TYPE_BF16:
216+
ggml_cuda_get_rows_switch_src0_type(src0_d, src0_type, src1_d, (nv_bfloat16 *) dst_d,
217+
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
218+
break;
219+
default:
220+
GGML_ABORT("%s: unsupported dst type: %s\n", __func__, ggml_type_name(dst_type));
221+
break;
222+
}
223+
}
224+
225+
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
226+
const ggml_tensor * src0 = dst->src[0];
227+
const ggml_tensor * src1 = dst->src[1];
228+
229+
cudaStream_t stream = ctx.stream();
230+
231+
GGML_TENSOR_BINARY_OP_LOCALS
232+
233+
GGML_ASSERT(src1->type == GGML_TYPE_I32);
234+
GGML_ASSERT(ne13 == 1);
235+
236+
GGML_ASSERT(src0->nb[0] == ggml_type_size(src0->type));
237+
GGML_ASSERT(src1->nb[0] == ggml_type_size(src1->type));
238+
GGML_ASSERT(dst->nb[0] == ggml_type_size(dst->type));
239+
240+
get_rows_cuda(src0->data, src0->type, (const int32_t *) src1->data, dst->data, dst->type,
241+
ne00, nb01, nb02, nb03, ne10, ne11, ne12, nb10, nb11, nb12, nb1, nb2, nb3, stream);
242+
}
243+
205244
void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
206245
const ggml_tensor * src0 = dst->src[0]; // gradients of forward pass output
207246
const ggml_tensor * src1 = dst->src[1]; // src1 in forward pass

ggml/src/ggml-cuda/getrows.cuh

Lines changed: 7 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -3,6 +3,13 @@
33
#define CUDA_GET_ROWS_BLOCK_SIZE 256
44
#define CUDA_GET_ROWS_BACK_BLOCK_SIZE 256
55

6+
void get_rows_cuda(
7+
const void * src0_d, ggml_type src0_type, const int32_t * src1_d, void * dst_d, ggml_type dst_type,
8+
int64_t ne00, size_t nb01, size_t nb02, size_t nb03,
9+
int64_t ne10, int64_t ne11, int64_t ne12, size_t nb10, size_t nb11, size_t nb12,
10+
size_t nb1, size_t nb2, size_t nb3,
11+
cudaStream_t stream);
12+
613
void ggml_cuda_op_get_rows(ggml_backend_cuda_context & ctx, ggml_tensor * dst);
714

815
void ggml_cuda_op_get_rows_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst);

0 commit comments

Comments
 (0)