Skip to content

Improve the efficiency of BufferedBlockDevice #8703

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Nov 16, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
226 changes: 138 additions & 88 deletions features/storage/TESTS/blockdevice/buffered_block_device/main.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -24,105 +24,155 @@
using namespace utest::v1;

static const bd_size_t heap_erase_size = 512;
static const bd_size_t heap_prog_size = heap_erase_size;
static const bd_size_t heap_read_size = 256;
static const bd_size_t num_blocks = 4;

typedef struct {
bd_size_t read_size;
bd_size_t prog_size;
} sizes_t;

static const int num_tests = 4;

sizes_t sizes[num_tests] = {
{1, 1},
{1, 128},
{4, 256},
{256, 512}
};

void functionality_test()
{
uint8_t *dummy = new (std::nothrow) uint8_t[num_blocks * heap_erase_size + heap_prog_size];
TEST_SKIP_UNLESS_MESSAGE(dummy, "Not enough memory for test");
delete[] dummy;
for (int i = 0; i < num_tests; i++) {
bd_size_t heap_read_size = sizes[i].read_size;
bd_size_t heap_prog_size = sizes[i].prog_size;

HeapBlockDevice heap_bd(num_blocks * heap_erase_size, heap_read_size, heap_prog_size, heap_erase_size);
BufferedBlockDevice bd(&heap_bd);
printf("Testing read size of %lld, prog size of %lld\n", heap_read_size, heap_prog_size);

int err = bd.init();
TEST_ASSERT_EQUAL(0, err);
uint8_t *read_buf, *write_buf;
read_buf = new (std::nothrow) uint8_t[heap_erase_size];
TEST_SKIP_UNLESS_MESSAGE(read_buf, "Not enough memory for test");
write_buf = new (std::nothrow) uint8_t[heap_erase_size];
TEST_SKIP_UNLESS_MESSAGE(write_buf, "Not enough memory for test");

uint8_t *read_buf, *write_buf;
read_buf = new (std::nothrow) uint8_t[heap_prog_size];
TEST_SKIP_UNLESS_MESSAGE(read_buf, "Not enough memory for test");
write_buf = new (std::nothrow) uint8_t[heap_prog_size];
TEST_SKIP_UNLESS_MESSAGE(write_buf, "Not enough memory for test");
uint8_t *dummy = new (std::nothrow) uint8_t[num_blocks * heap_erase_size + heap_prog_size + heap_read_size];
TEST_SKIP_UNLESS_MESSAGE(dummy, "Not enough memory for test");
delete[] dummy;

TEST_ASSERT_EQUAL(1, bd.get_read_size());
TEST_ASSERT_EQUAL(1, bd.get_program_size());
TEST_ASSERT_EQUAL(heap_erase_size, bd.get_erase_size());
HeapBlockDevice *heap_bd = new HeapBlockDevice(num_blocks * heap_erase_size, heap_read_size, heap_prog_size, heap_erase_size);
BufferedBlockDevice *bd = new BufferedBlockDevice(heap_bd);

for (bd_size_t i = 0; i < num_blocks; i++) {
memset(write_buf, i, heap_prog_size);
err = heap_bd.program(write_buf, i * heap_prog_size, heap_prog_size);
int err = bd->init();
TEST_ASSERT_EQUAL(0, err);
}

err = bd.read(read_buf, heap_prog_size + heap_prog_size / 2, 1);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL(1, read_buf[0]);

err = bd.read(read_buf, 2 * heap_prog_size + heap_prog_size / 2, 4);
TEST_ASSERT_EQUAL(0, err);
memset(write_buf, 2, 4);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, 4);

memset(write_buf, 1, heap_prog_size);
memset(write_buf + 64, 0x5A, 8);
memset(write_buf + 72, 0xA5, 8);
err = bd.program(write_buf + 64, heap_prog_size + 64, 8);
TEST_ASSERT_EQUAL(0, err);
err = bd.program(write_buf + 72, heap_prog_size + 72, 8);
TEST_ASSERT_EQUAL(0, err);
err = bd.read(read_buf, heap_prog_size, heap_prog_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_prog_size);
memset(write_buf, 1, heap_prog_size);
// Underlying BD should not be updated before sync
err = heap_bd.read(read_buf, heap_prog_size, heap_prog_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_prog_size);
err = bd.sync();
TEST_ASSERT_EQUAL(0, err);
memset(write_buf + 64, 0x5A, 8);
memset(write_buf + 72, 0xA5, 8);
// Should be updated now
err = bd.read(read_buf, heap_prog_size, heap_prog_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_prog_size);
err = heap_bd.read(read_buf, heap_prog_size, heap_prog_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_prog_size);

memset(write_buf, 0xAA, 16);
memset(write_buf + 16, 0xBB, 16);
err = bd.program(write_buf, 3 * heap_prog_size - 16, 32);
TEST_ASSERT_EQUAL(0, err);
// First block should sync, but second still shouldn't
memset(write_buf, 2, heap_prog_size - 16);
memset(write_buf + heap_prog_size - 16, 0xAA, 16);
err = heap_bd.read(read_buf, 2 * heap_prog_size, heap_prog_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_prog_size);
memset(write_buf, 3, heap_prog_size);
err = heap_bd.read(read_buf, 3 * heap_prog_size, heap_prog_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_prog_size);
memset(write_buf, 0xBB, 16);
err = bd.read(read_buf, 3 * heap_prog_size, heap_prog_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_prog_size);
// Moving to another block should automatically sync
err = bd.read(read_buf, 15, 1);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL(0, read_buf[0]);
err = heap_bd.read(read_buf, 3 * heap_prog_size, heap_prog_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_prog_size);
err = bd.read(read_buf, 3 * heap_prog_size, heap_prog_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_prog_size);

delete[] read_buf;
delete[] write_buf;
TEST_ASSERT_EQUAL(1, bd->get_read_size());
TEST_ASSERT_EQUAL(1, bd->get_program_size());
TEST_ASSERT_EQUAL(heap_erase_size, bd->get_erase_size());

for (bd_size_t i = 0; i < num_blocks; i++) {
memset(write_buf, i, heap_erase_size);
err = heap_bd->program(write_buf, i * heap_erase_size, heap_erase_size);
// Heap BD allocates memory on each program, so failure here indicates
// lack of memory - just skip test.
TEST_SKIP_UNLESS_MESSAGE(!err, "Not enough memory for test");
}

err = bd->read(read_buf, heap_erase_size + heap_erase_size / 2, 1);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL(1, read_buf[0]);

err = bd->read(read_buf, 2 * heap_erase_size + heap_erase_size / 2, 4);
TEST_ASSERT_EQUAL(0, err);
memset(write_buf, 2, 4);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, 4);

memset(write_buf, 1, heap_erase_size);
memset(write_buf + 64, 0x5A, 8);
memset(write_buf + 72, 0xA5, 8);
err = bd->program(write_buf + 64, heap_erase_size + 64, 8);
TEST_ASSERT_EQUAL(0, err);
err = bd->program(write_buf + 72, heap_erase_size + 72, 8);
TEST_ASSERT_EQUAL(0, err);
err = bd->read(read_buf, heap_erase_size, heap_erase_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_erase_size);
memset(write_buf, 1, heap_erase_size);
// Underlying BD should not be updated before sync
err = heap_bd->read(read_buf, heap_erase_size, heap_erase_size);
TEST_ASSERT_EQUAL(0, err);
if (heap_prog_size > 1) {
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_erase_size);
}
err = bd->sync();
TEST_ASSERT_EQUAL(0, err);
memset(write_buf + 64, 0x5A, 8);
memset(write_buf + 72, 0xA5, 8);
// Should be updated now
err = bd->read(read_buf, heap_erase_size, heap_erase_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_erase_size);
err = heap_bd->read(read_buf, heap_erase_size, heap_erase_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_erase_size);

memset(write_buf, 0xAA, 16);
memset(write_buf + 16, 0xBB, 16);
err = bd->program(write_buf, 3 * heap_erase_size - 16, 32);
TEST_ASSERT_EQUAL(0, err);
// First block should sync, but second still shouldn't
memset(write_buf, 2, heap_erase_size - 16);
memset(write_buf + heap_erase_size - 16, 0xAA, 16);
err = heap_bd->read(read_buf, 2 * heap_erase_size, heap_erase_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_erase_size);
memset(write_buf, 3, heap_erase_size);
err = heap_bd->read(read_buf, 3 * heap_erase_size, heap_erase_size);
TEST_ASSERT_EQUAL(0, err);
if (heap_prog_size > 1) {
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_erase_size);
}
memset(write_buf, 0xBB, 16);
err = bd->read(read_buf, 3 * heap_erase_size, heap_erase_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_erase_size);
// Writing to another block should automatically sync
err = bd->program(write_buf, 15, 1);
TEST_ASSERT_EQUAL(0, err);
err = heap_bd->read(read_buf, 3 * heap_erase_size, heap_erase_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_erase_size);
err = bd->read(read_buf, 3 * heap_erase_size, heap_erase_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, heap_erase_size);

// Unaligned reads and writes
memset(write_buf, 2, 41);
memset(write_buf + 41, 0x39, 21);
err = bd->program(write_buf + 41, 2 * heap_erase_size + 41, 21);
TEST_ASSERT_EQUAL(0, err);
err = heap_bd->read(read_buf, 2 * heap_erase_size, heap_erase_size);
TEST_ASSERT_EQUAL(0, err);
if (heap_prog_size > 1) {
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, 41);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf + 41, 21);
}
err = bd->read(read_buf, 2 * heap_erase_size + 4, 41 + 21 - 4);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf + 4, read_buf, 41 + 21 - 4);
bd->sync();
err = heap_bd->read(read_buf, 2 * heap_erase_size, heap_erase_size);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf, read_buf, 41 + 21);
err = bd->read(read_buf, 2 * heap_erase_size + 10, 41 + 21 - 10);
TEST_ASSERT_EQUAL(0, err);
TEST_ASSERT_EQUAL_UINT8_ARRAY(write_buf + 10, read_buf, 41 + 21 - 10);

bd->deinit();

delete[] read_buf;
delete[] write_buf;
delete bd;
delete heap_bd;
}
}

// Test setup
Expand Down
Loading