Skip to content

Commit e0418e9

Browse files
committed
Update scores.rst
1 parent 3aeac11 commit e0418e9

File tree

1 file changed

+8
-12
lines changed

1 file changed

+8
-12
lines changed

doc/guide/scores.rst

Lines changed: 8 additions & 12 deletions
Original file line numberDiff line numberDiff line change
@@ -330,7 +330,7 @@ implements the score function:
330330
.. math::
331331
332332
\psi(W,\theta, \eta)
333-
:=\; &-\theta + \left(\frac{D}{\mathbb{E}_n[D]} - \frac{\frac{m(X) (1-D)}{1-m(X)}}{\mathbb{E}_n\left[\frac{m(X) (1-D)}{1-m(X)}\right]}\right)\left(Y_1 - Y_0 -g(0,X)\right)
333+
:=\; &-\theta + \left(\frac{D}{\mathbb{E}_n[D]} - \frac{1-D}{\mathbb{E}_n[1-D]}\right)\left(Y_1 - Y_0 -g(0,X)\right)
334334
335335
&+ \left(1 - \frac{D}{\mathbb{E}_n[D]}\right) \left(g(1,X) - g(0,X)\right)
336336
@@ -342,32 +342,30 @@ where the components of the linear score are
342342
343343
\psi_a(W; \eta) \;= &- 1,
344344
345-
\psi_b(W; \eta) \;= &\left(\frac{D}{\mathbb{E}_n[D]} - \frac{\frac{m(X) (1-D)}{1-m(X)}}{\mathbb{E}_n\left[\frac{m(X) (1-D)}{1-m(X)}\right]}\right)\left(Y_1 - Y_0 -g(0,X)\right)
345+
\psi_b(W; \eta) \;= &\left(\frac{D}{\mathbb{E}_n[D]} - \frac{1-D}{\mathbb{E}_n[1-D]}\right)\left(Y_1 - Y_0 -g(0,X)\right)
346346
347347
&+ \left(1 - \frac{D}{\mathbb{E}_n[D]}\right) \left(g(1,X) - g(0,X)\right)
348348
349-
and the nuisance elements :math:`\eta=(g, m)` are defined as
349+
and the nuisance elements :math:`\eta=(g)` are defined as
350350

351351
.. math::
352352
353353
g_{0}(0, X) &= \mathbb{E}[Y_1 - Y_0|D=0, X]
354354
355355
g_{0}(1, X) &= \mathbb{E}[Y_1 - Y_0|D=1, X]
356356
357-
m_0(X) &= P(D=1|X).
358-
359357
Analogously, if ``in_sample_normalization='False'``, the score is set to
360358

361359
.. math::
362360
363361
\psi(W,\theta, \eta)
364-
:=\; &-\theta + \frac{D - m(X)}{p(1-m(X))}\left(Y_1 - Y_0 -g(0,X)\right)
362+
:=\; &-\theta + \frac{D - p}{p(1-p)}\left(Y_1 - Y_0 -g(0,X)\right)
365363
366364
&+ \left(1 - \frac{D}{p}\right) \left(g(1,X) - g(0,X)\right)
367365
368366
=\; &\psi_a(W; \eta) \theta + \psi_b(W; \eta)
369367
370-
with :math:`\eta=(g, m, p)`, where :math:`p_0 = \mathbb{E}[D]` is estimated on the cross-fitting folds.
368+
with :math:`\eta=(g, p)`, where :math:`p_0 = \mathbb{E}[D]` is estimated on the cross-fitting folds.
371369
Remark that this will result in the same score, but just uses slightly different normalization.
372370

373371
Difference-in-Differences for repeated cross-sections
@@ -408,13 +406,11 @@ where the components of the linear score are
408406
409407
& + \frac{m(X) (1-D)(1-T)}{1-m(X)} \mathbb{E}_n\left[\frac{m(X) (1-D)(1-T)}{1-m(X)}\right]^{-1} (Y-g(0,0,X))
410408
411-
and the nuisance elements :math:`\eta=(g, m)` are defined as
409+
and the nuisance elements :math:`\eta=(g)` are defined as
412410

413411
.. math::
414412
415-
g_{0}(d, t, X) &= \mathbb{E}[Y|D=d, T=t, X]
416-
417-
m_0(X) &= P(D=1|X).
413+
g_{0}(d, t, X) &= \mathbb{E}[Y|D=d, T=t, X].
418414
419415
If ``in_sample_normalization='False'``, the score is set to
420416

@@ -432,7 +428,7 @@ If ``in_sample_normalization='False'``, the score is set to
432428
433429
=\; &\psi_a(W; \eta) \theta + \psi_b(W; \eta)
434430
435-
with :math:`\eta=(g, m, p, \lambda)`, where :math:`p_0 = \mathbb{E}[D]` and :math:`\lambda_0 = \mathbb{E}[T]` are estimated on the cross-fitting folds.
431+
with :math:`\eta=(g, p, \lambda)`, where :math:`p_0 = \mathbb{E}[D]` and :math:`\lambda_0 = \mathbb{E}[T]` are estimated on the cross-fitting folds.
436432
Remark that this will result in the same score, but just uses slightly different normalization.
437433

438434
``score='experimental'`` assumes that the treatment probability is independent of the covariates :math:`X` and

0 commit comments

Comments
 (0)