Official implementation of the paper titled "Scene-level Appearance Transfer with Semantic Correspondences".
Liyuan Zhu1, Shengqu Cai1,*, Shengyu Huang2,*, Gordon Wetzstein1, Naji Khosravan3, Iro Armeni1
1Stanford University, 2NVIDIA Research, 3Zillow Group | * denotes equal contribution
@inproceedings{zhu2025_restyle3d,
author = {Liyuan Zhu and Shengqu Cai and Shengyu Huang and Gordon Wetzstein and Naji Khosravan and Iro Armeni},
title = {Scene-level Appearance Transfer with Semantic Correspondences},
booktitle = {ACM SIGGRAPH 2025 Conference Papers},
year = {2025},
}
We introduce ReStyle3D, a novel framework for scene-level appearance transfer from a single style image to a real-world scene represented by multiple views. This method combines explicit semantic correspondences with multi-view consistency to achieve precise and coherent stylization.
-
Ubuntu 22.04 LTS, Python 3.10.15, CUDA 12.2, GeForce RTX 4090/3090
-
CentOS Linux 7, Python 3.12.1, CUDA 12.4, NVIDIA A100
git clone [email protected]:GradientSpaces/ReStyle3D.git
cd ReStyle3D
conda create -n restyle3d python=3.10
conda activate restyle3d
pip install -r requirements.txt
Download the pretrained models by running:
bash scripts/download_weights.sh
We download our dataset:
bash scripts/download_data.sh
We include 3 demo images to run semantic appearance transfer:
python restyle_image.py
To run on a single scene and style:
python restyle_scene.py \
--scene_path demo/scene_transfer/bedroom/ \
--scene_type bedroom \
--style_path demo/design_styles/bedroom/pexels-itsterrymag-2631746
We organize the data into two components:
- Interior Scenes: Multi-view real-world scans with aligned images, depth, and semantic segmentations.
📁 data/
└── interiors/
├── bedroom/
│ ├── 0/
│ │ ├── images/ # multi-view RGB images
│ │ ├── depth/ # depth maps
│ │ └── seg_dict/ # semantic segmentation dictionaries
│ └── 1/
│ └── ...
├── living_room/
└── kitchen/
- Design Styles: Style examplars with precomputed semantic segmentation.
📁 data/
└── design_styles/
├── bedroom/
│ └── pexels-itsterrymag-2631746/
│ ├── image.jpg # style reference image
│ ├── seg_dict.pth # semantic segmentation dictionary
│ └── seg.png # segmentation visualization
├── living_room/
└── kitchen/
- Release full dataset
- Release evaluation code
- Customize dataset
Our codebase is built on top of the following works:
We appreciate the open-source efforts from the authors.
If you encounter any issues or have questions, feel free to reach out: Liyuan Zhu.