Skip to content

Path to use FiniteDiff for ApproximateSparsityDetection #277

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Dec 16, 2023
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "SparseDiffTools"
uuid = "47a9eef4-7e08-11e9-0b38-333d64bd3804"
authors = ["Pankaj Mishra <[email protected]>", "Chris Rackauckas <[email protected]>"]
version = "2.14.0"
version = "2.15.0"

[deps]
ADTypes = "47edcb42-4c32-4615-8424-f2b9edc5f35b"
Expand Down
6 changes: 4 additions & 2 deletions ext/SparseDiffToolsEnzymeExt.jl
Original file line number Diff line number Diff line change
@@ -1,14 +1,16 @@
module SparseDiffToolsEnzymeExt

import ArrayInterface: fast_scalar_indexing
import SparseDiffTools: __f̂,
__maybe_copy_x, __jacobian!, __gradient, __gradient!, AutoSparseEnzyme
import SparseDiffTools: __f̂, __maybe_copy_x, __jacobian!, __gradient, __gradient!,
AutoSparseEnzyme, __test_backend_loaded
# FIXME: For Enzyme we currently assume reverse mode
import ADTypes: AutoEnzyme
using Enzyme

using ForwardDiff

@inline __test_backend_loaded(::Union{AutoSparseEnzyme, AutoEnzyme}) = nothing

## Satisfying High-Level Interface for Sparse Jacobians
function __gradient(::Union{AutoSparseEnzyme, AutoEnzyme}, f, x, cols)
dx = zero(x)
Expand Down
4 changes: 3 additions & 1 deletion ext/SparseDiffToolsZygoteExt.jl
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
module SparseDiffToolsZygoteExt

using ADTypes, LinearAlgebra, Zygote
import SparseDiffTools: SparseDiffTools, DeivVecTag, AutoDiffVJP
import SparseDiffTools: SparseDiffTools, DeivVecTag, AutoDiffVJP, __test_backend_loaded
import ForwardDiff: ForwardDiff, Dual, partials
import SciMLOperators: update_coefficients, update_coefficients!
import Setfield: @set!
Expand All @@ -12,6 +12,8 @@ import SparseDiffTools: numback_hesvec!,
import SparseDiffTools: __f̂, __jacobian!, __gradient, __gradient!
import ADTypes: AutoZygote, AutoSparseZygote

@inline __test_backend_loaded(::Union{AutoSparseZygote, AutoZygote}) = nothing

## Satisfying High-Level Interface for Sparse Jacobians
function __gradient(::Union{AutoSparseZygote, AutoZygote}, f::F, x, cols) where {F}
_, ∂x, _ = Zygote.gradient(__f̂, f, x, cols)
Expand Down
58 changes: 51 additions & 7 deletions src/highlevel/coloring.jl
Original file line number Diff line number Diff line change
Expand Up @@ -34,28 +34,72 @@ end
## Right now we hardcode it to use `ForwardDiff`
function (alg::ApproximateJacobianSparsity)(ad::AbstractSparseADType, f::F, x; fx = nothing,
kwargs...) where {F}
if !(ad isa AutoSparseForwardDiff)
@warn "$(ad) support for approximate jacobian not implemented. Using ForwardDiff instead." maxlog=1
end
@unpack ntrials, rng = alg
fx = fx === nothing ? f(x) : fx
J = fill!(similar(fx, length(fx), length(x)), 0)
cfg = ForwardDiff.JacobianConfig(f, x)
J = fill!(similar(fx, length(fx), length(x)), 0)
J_cache = similar(J)
x_ = similar(x)
for _ in 1:ntrials
randn!(rng, x_)
ForwardDiff.jacobian!(J_cache, f, x_, cfg)
@. J += abs(J_cache)
end
return (JacPrototypeSparsityDetection(; jac_prototype = sparse(J), alg.alg))(ad, f, x;
fx, kwargs...)
end

function (alg::ApproximateJacobianSparsity)(ad::AbstractSparseADType, f::F, fx, x;
kwargs...) where {F}
if !(ad isa AutoSparseForwardDiff)
@warn "$(ad) support for approximate jacobian not implemented. Using ForwardDiff instead." maxlog=1
end
@unpack ntrials, rng = alg
cfg = ForwardDiff.JacobianConfig(f, fx, x)
J = fill!(similar(fx, length(fx), length(x)), 0)
J_cache = similar(J)
x_ = similar(x)
for _ in 1:ntrials
randn!(rng, x_)
ForwardDiff.jacobian!(J_cache, f, fx, x_, cfg)
@. J += abs(J_cache)
end
return (JacPrototypeSparsityDetection(; jac_prototype = sparse(J), alg.alg))(ad, f, x;
fx, kwargs...)
end

function (alg::ApproximateJacobianSparsity)(ad::AutoSparseFiniteDiff, f::F, x; fx = nothing,
kwargs...) where {F}
@unpack ntrials, rng = alg
fx = fx === nothing ? f(x) : fx
cache = FiniteDiff.JacobianCache(x, fx)
J = fill!(similar(fx, length(fx), length(x)), 0)
x_ = similar(x)
ε = eps(eltype(x)) * 100
for _ in 1:ntrials
x_ = similar(x)
randn!(rng, x_)
J .+= abs.(ForwardDiff.jacobian(f, x_, cfg))
J_cache = FiniteDiff.finite_difference_jacobian(f, x, cache)
@. J += (abs(J_cache) .≥ ε) # hedge against numerical issues
end
return (JacPrototypeSparsityDetection(; jac_prototype = sparse(J), alg.alg))(ad, f, x;
fx, kwargs...)
end

function (alg::ApproximateJacobianSparsity)(ad::AbstractSparseADType, f!::F, fx, x;
function (alg::ApproximateJacobianSparsity)(ad::AutoSparseFiniteDiff, f!::F, fx, x;
kwargs...) where {F}
@unpack ntrials, rng = alg
cfg = ForwardDiff.JacobianConfig(f!, fx, x)
cache = FiniteDiff.JacobianCache(x, fx)
J = fill!(similar(fx, length(fx), length(x)), 0)
J_cache = similar(J)
x_ = similar(x)
ε = eps(eltype(x)) * 100
for _ in 1:ntrials
x_ = similar(x)
randn!(rng, x_)
J .+= abs.(ForwardDiff.jacobian(f!, fx, x_, cfg))
FiniteDiff.finite_difference_jacobian!(J_cache, f!, x_, cache)
@. J += (abs(J_cache) .≥ ε) # hedge against numerical issues
end
return (JacPrototypeSparsityDetection(; jac_prototype = sparse(J), alg.alg))(ad, f!, fx,
x; kwargs...)
Expand Down
12 changes: 12 additions & 0 deletions src/highlevel/common.jl
Original file line number Diff line number Diff line change
Expand Up @@ -332,3 +332,15 @@ init_jacobian(J::SparseMatrixCSC, ::Type{T}, fx, x; kwargs...) where {T} = T.(J)

__maybe_copy_x(_, x) = x
__maybe_copy_x(_, ::Nothing) = nothing

# Check Backend has been loaded
## We pay a small compile time cost for this, but it avoids cryptic error messages
@inline function __test_backend_loaded(ad::AbstractADType)
error("$(ad) requires $(__backend(ad)).jl to be loaded. Please load it.")
end

@inline __backend(ad) = nothing
@inline __backend(::Union{AutoEnzyme, AutoSparseEnzyme}) = :Enzyme
@inline __backend(::Union{AutoZygote, AutoSparseZygote}) = :Zygote
@inline __backend(::Union{AutoForwardDiff, AutoSparseForwardDiff}) = :ForwardDiff
@inline __backend(::Union{AutoFiniteDiff, AutoSparseFiniteDiff}) = :FiniteDiff
2 changes: 2 additions & 0 deletions src/highlevel/reverse_mode.jl
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@ end

function sparse_jacobian!(J::AbstractMatrix, ad, cache::ReverseModeJacobianCache, args...)
if cache.coloring isa NoMatrixColoring
__test_backend_loaded(ad)
return __jacobian!(J, ad, args...)
else
return __sparse_jacobian_reverse_impl!(J, ad, cache.idx_vec, cache.coloring,
Expand All @@ -43,6 +44,7 @@ end
function __sparse_jacobian_reverse_impl!(J::AbstractMatrix, ad, idx_vec,
cache::MatrixColoringResult, f::F, fx, x) where {F}
# If `fx` is `nothing` then assume `f` is not in-place
__test_backend_loaded(ad)
x_ = __maybe_copy_x(ad, x)
fx_ = __maybe_copy_x(ad, fx)
@unpack colorvec, nz_rows, nz_cols = cache
Expand Down