Skip to content

Fixing implicit gradients #141

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Jul 31, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 6 additions & 6 deletions src/kernels/transformedkernel.jl
Original file line number Diff line number Diff line change
Expand Up @@ -63,11 +63,11 @@ end
# Kernel matrix operations

function kerneldiagmatrix!(K::AbstractVector, κ::TransformedKernel, x::AbstractVector)
return kerneldiagmatrix!(K, κ.kernel, map(κ.transform, x))
return kerneldiagmatrix!(K, κ.kernel, _map(κ.transform, x))
end

function kernelmatrix!(K::AbstractMatrix, κ::TransformedKernel, x::AbstractVector)
return kernelmatrix!(K, kernel(κ), map(κ.transform, x))
return kernelmatrix!(K, kernel(κ), _map(κ.transform, x))
end

function kernelmatrix!(
Expand All @@ -76,17 +76,17 @@ function kernelmatrix!(
x::AbstractVector,
y::AbstractVector,
)
return kernelmatrix!(K, kernel(κ), map(κ.transform, x), map(κ.transform, y))
return kernelmatrix!(K, kernel(κ), _map(κ.transform, x), _map(κ.transform, y))
end

function kerneldiagmatrix(κ::TransformedKernel, x::AbstractVector)
return kerneldiagmatrix(κ.kernel, map(κ.transform, x))
return kerneldiagmatrix(κ.kernel, _map(κ.transform, x))
end

function kernelmatrix(κ::TransformedKernel, x::AbstractVector)
return kernelmatrix(kernel(κ), map(κ.transform, x))
return kernelmatrix(kernel(κ), _map(κ.transform, x))
end

function kernelmatrix(κ::TransformedKernel, x::AbstractVector, y::AbstractVector)
return kernelmatrix(kernel(κ), map(κ.transform, x), map(κ.transform, y))
return kernelmatrix(kernel(κ), _map(κ.transform, x), _map(κ.transform, y))
end
2 changes: 1 addition & 1 deletion src/transform/scaletransform.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,7 @@ end

set!(t::ScaleTransform,ρ::Real) = t.s .= [ρ]

(t::ScaleTransform)(x) = first(t.s) .* x
(t::ScaleTransform)(x) = first(t.s) * x

_map(t::ScaleTransform, x::AbstractVector{<:Real}) = first(t.s) .* x
_map(t::ScaleTransform, x::ColVecs) = ColVecs(first(t.s) .* x.X)
Expand Down
23 changes: 23 additions & 0 deletions test/kernels/transformedkernel.jl
Original file line number Diff line number Diff line change
Expand Up @@ -52,4 +52,27 @@
end
end
test_ADs(x->transform(SqExponentialKernel(), x[1]), rand(1))# ADs = [:ForwardDiff, :ReverseDiff])
# Test implicit gradients
@testset "Implicit gradients" begin
k = transform(SqExponentialKernel(), 2.0)
ps = Flux.params(k)
X = rand(10, 1); x = vec(X)
A = rand(10, 10)
# Implicit
g1 = Flux.gradient(ps) do
tr(kernelmatrix(k, X, obsdim = 1) * A)
end
# Explicit
g2 = Flux.gradient(k) do k
tr(kernelmatrix(k, X, obsdim = 1) * A)
end

# Implicit for a vector
g3 = Flux.gradient(ps) do
tr(kernelmatrix(k, x) * A)
end
@test g1[first(ps)] ≈ first(g2).transform.s
@test g1[first(ps)] ≈ g3[first(ps)]
end

end