Skip to content

Add Gabor Kernel #52

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 18 commits into from
Apr 7, 2020
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 2 additions & 2 deletions src/KernelFunctions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@ export ExponentiatedKernel
export MaternKernel, Matern32Kernel, Matern52Kernel
export LinearKernel, PolynomialKernel
export RationalQuadraticKernel, GammaRationalQuadraticKernel
export MahalanobisKernel
export MahalanobisKernel, GaborKernel
export KernelSum, KernelProduct
export TransformedKernel, ScaledKernel

Expand Down Expand Up @@ -45,7 +45,7 @@ include("distances/dotproduct.jl")
include("distances/delta.jl")
include("transform/transform.jl")

for k in ["exponential","matern","polynomial","constant","rationalquad","exponentiated","cosine","maha"]
for k in ["exponential","matern","polynomial","constant","rationalquad","exponentiated","cosine","maha","gabor"]
include(joinpath("kernels",k*".jl"))
end
include("kernels/transformedkernel.jl")
Expand Down
74 changes: 74 additions & 0 deletions src/kernels/gabor.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
import Base.getproperty

"""
GaborKernel(; ell::Real=1.0, p::Real=1.0)

Gabor kernel with length scale ell and period p. Given by
```math
κ(x,y) = h(x-z), h(t) = exp(-sum(t.^2./(ell.^2)))*cos(pi*sum(t./p))
```

"""
struct GaborKernel{T<:Real, K<:Kernel} <: BaseKernel
κ::K
function GaborKernel(;ell=nothing, p=nothing)
k = _gabor(ell=ell, p=p)
if ell == nothing ell=1.0 end
if p == nothing p=1.0 end
new{Union{typeof(ell),typeof(p)}, typeof(k)}(k)
end
end

function _gabor(; ell = nothing, p = nothing)
if ell === nothing
if p === nothing
return SqExponentialKernel() * CosineKernel()
else
return SqExponentialKernel() * transform(CosineKernel(), 1 ./ p)
end
elseif p === nothing
return transform(SqExponentialKernel(), 1 ./ ell) * CosineKernel()
else
return transform(SqExponentialKernel(), 1 ./ ell) * transform(CosineKernel(), 1 ./ p)
end
end

function Base.getproperty(k::GaborKernel, v::Symbol)
if v == :κ
return getfield(k, v)
elseif v == :ell && typeof(k.κ.kernels[1]) <: SqExponentialKernel
return 1.0
elseif v == :ell && typeof(k.κ.kernels[1]) <: TransformedKernel
return 1 ./ k.κ.kernels[1].transform.s[1]
elseif v == :p && typeof(k.κ.kernels[2]) <: CosineKernel
return 1.0
elseif v == :p && typeof(k.κ.kernels[2]) <: TransformedKernel
return 1 ./ k.κ.kernels[2].transform.s[1]
else
error("Invalid Property")
end
end

kappa(κ::GaborKernel, x, y) where {T<:Real} = kappa(κ.κ, x ,y)

function kernelmatrix(
κ::GaborKernel,
X::AbstractMatrix;
obsdim::Int=defaultobs)
kernelmatrix(κ.κ, X; obsdim=obsdim)
end

function kernelmatrix(
κ::GaborKernel,
X::AbstractMatrix,
Y::AbstractMatrix;
obsdim::Int=defaultobs)
kernelmatrix(κ.κ, X, Y; obsdim=obsdim)
end

function kerneldiagmatrix(
κ::GaborKernel,
X::AbstractMatrix;
obsdim::Int=defaultobs) #TODO Add test
kerneldiagmatrix(κ.κ, X; obsdim=obsdim)
end
2 changes: 2 additions & 0 deletions src/trainable.jl
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,8 @@ trainable(k::RationalQuadraticKernel) = (k.α,)

trainable(k::MahalanobisKernel) = (k.P,)

trainable(k::GaborKernel) = (k.κ,)

#### Composite kernels

trainable(κ::KernelProduct) = κ.kernels
Expand Down
9 changes: 9 additions & 0 deletions test/test_kernels.jl
Original file line number Diff line number Diff line change
Expand Up @@ -68,6 +68,15 @@ x = rand()*2; v1 = rand(3); v2 = rand(3); id = IdentityTransform()
@test k(v1,v2) ≈ exp(dot(v1,v2))
end
end
@testset "Gabor" begin
ell = abs(rand())
p = abs(rand())
k = GaborKernel(ell=ell, p=p)
@test k.ell == ell
@test k.p == p
@test kappa(k,v1,v2) ≈ exp(-sqeuclidean(v1,v2) ./(k.ell.^2))*cospi(euclidean(v1,v2)./ k.p) atol=1e-5
@test kappa(k,v1,v2) ≈ kappa(transform(SqExponentialKernel(), 1/k.ell),v1,v2)*kappa(transform(CosineKernel(), 1/k.p), v1,v2) atol=1e-5
end
@testset "Matern" begin
@testset "MaternKernel" begin
ν = 2.0
Expand Down