Skip to content

[WIP] Refactoring of KernelSum and KernelProduct #73

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 16 additions & 23 deletions src/kernels/kernelproduct.jl
Original file line number Diff line number Diff line change
@@ -1,61 +1,54 @@
"""
KernelProduct(kernels::Array{Kernel})
KernelProduct(k1::Kernel, k2::Kernel)

Create a product of kernels.
One can also use the operator `*` :
```
k1 = SqExponentialKernel()
k2 = LinearKernel()
k = KernelProduct([k1, k2]) == k1 * k2
k = KernelProduct(k1, k2) == k1 * k2
kernelmatrix(k, X) == kernelmatrix(k1, X) .* kernelmatrix(k2, X)
kernelmatrix(k, X) == kernelmatrix(k1 * k2, X)
```
"""
struct KernelProduct <: Kernel
kernels::Vector{Kernel}
struct KernelProduct{K₁<:Kernel, K₂<:Kernel} <: Kernel
κ₁::K₁
κ₂::K₂
end

Base.:*(k1::Kernel,k2::Kernel) = KernelProduct([k1,k2])
Base.:*(k1::KernelProduct,k2::KernelProduct) = KernelProduct(vcat(k1.kernels,k2.kernels)) #TODO Add test
Base.:*(k::Kernel,kp::KernelProduct) = KernelProduct(vcat(k,kp.kernels))
Base.:*(kp::KernelProduct,k::Kernel) = KernelProduct(vcat(kp.kernels,k))
Base.:*(k1::Kernel, k2::Kernel) = KernelProduct(k1, k2)

Base.length(k::KernelProduct) = length(k.kernels)

kappa(κ::KernelProduct, x ,y) = prod(kappa(k, x, y) for k in κ.kernels)
kappa(κ::KernelProduct, x ,y) = kappa(κ.κ₁, x, y) * kappa(κ.κ₁, x, y)

hadamard(x,y) = x.*y

function kernelmatrix(
κ::KernelProduct,
X::AbstractMatrix;
obsdim::Int=defaultobs)
reduce(hadamard,kernelmatrix(κ.kernels[i],X,obsdim=obsdim) for i in 1:length(κ))
function kernelmatrix(κ::KernelProduct, X::AbstractMatrix; obsdim::Int = defaultobs)
kernelmatrix(κ.κ₁, X, obsdim = obsdim) .* kernelmatrix(κ.κ₂, X, obsdim = obsdim)
end

function kernelmatrix(
κ::KernelProduct,
X::AbstractMatrix,
Y::AbstractMatrix;
obsdim::Int=defaultobs)
reduce(hadamard,_kernelmatrix(κ.kernels[i],X,Y,obsdim) for i in 1:length(κ))
kernelmatrix(κ.κ₁, X, Y, obsdim = obsdim) .* kernelmatrix(κ.κ₂, X, Y, obsdim = obsdim)
end

function kerneldiagmatrix(
κ::KernelProduct,
X::AbstractMatrix;
obsdim::Int=defaultobs) #TODO Add test
reduce(hadamard,kerneldiagmatrix(κ.kernels[i],X,obsdim=obsdim) for i in 1:length(κ))
kerneldiagmatrix(κ.κ₁, X, obsdim = obsdim) .* kerneldiagmatrix(κ.κ₂, X, obsdim = obsdim)
end

function Base.show(io::IO, κ::KernelProduct)
printshifted(io, κ, 0)
end

function printshifted(io::IO, κ::KernelProduct, shift::Int)
print(io, "Product of $(length(κ)) kernels:")
for i in 1:length(κ)
print(io, "\n" * ("\t" ^ (shift + 1))* "- ")
printshifted(io, κ.kernels[i], shift + 2)
end
print(io, "Kernel Product :")
print(io, "\n" * ("\t" ^ (shift + 1)))
printshifted(io, κ.κ₁, shift + 2)
print(io, "\n" * ("\t" ^ (shift + 1)))
printshifted(io, κ.κ₂, shift + 2)
end
60 changes: 17 additions & 43 deletions src/kernels/kernelsum.jl
Original file line number Diff line number Diff line change
@@ -1,55 +1,29 @@
"""
KernelSum(kernels::Array{Kernel}; weights::Array{Real}=ones(length(kernels)))
KernelSum(k1::Kernel, k2::Kernel)

Create a positive weighted sum of kernels. All weights should be positive.
One can also use the operator `+`
```
k1 = SqExponentialKernel()
k2 = LinearKernel()
k = KernelSum([k1, k2]) == k1 + k2
k = KernelSum(k1, k2) == k1 + k2
kernelmatrix(k, X) == kernelmatrix(k1, X) .+ kernelmatrix(k2, X)
kernelmatrix(k, X) == kernelmatrix(k1 + k2, X)
kweighted = 0.5* k1 + 2.0*k2 == KernelSum([k1, k2], weights = [0.5, 2.0])
```
"""
struct KernelSum <: Kernel
kernels::Vector{Kernel}
weights::Vector{Real}
struct KernelSum{K₁<:Kernel, K₂<:Kernel} <: Kernel
κ₁::K₁
κ₂::K₂
end

function KernelSum(
kernels::AbstractVector{<:Kernel};
weights::AbstractVector{<:Real} = ones(Float64, length(kernels)),
)
@assert length(kernels) == length(weights) "Weights and kernel vector should be of the same length"
@assert all(weights .>= 0) "All weights should be positive"
return KernelSum(kernels, weights)
end

Base.:+(k1::Kernel, k2::Kernel) = KernelSum([k1, k2], weights = [1.0, 1.0])
Base.:+(k1::ScaledKernel, k2::ScaledKernel) = KernelSum([kernel(k1), kernel(k2)], weights = [first(k1.σ²), first(k2.σ²)])
Base.:+(k1::KernelSum, k2::KernelSum) =
KernelSum(vcat(k1.kernels, k2.kernels), weights = vcat(k1.weights, k2.weights))
Base.:+(k::Kernel, ks::KernelSum) =
KernelSum(vcat(k, ks.kernels), weights = vcat(1.0, ks.weights))
Base.:+(k::ScaledKernel, ks::KernelSum) =
KernelSum(vcat(kernel(k), ks.kernels), weights = vcat(first(k.σ²), ks.weights))
Base.:+(k::ScaledKernel, ks::Kernel) =
KernelSum(vcat(kernel(k), ks), weights = vcat(first(k.σ²), 1.0))
Base.:+(ks::KernelSum, k::Kernel) =
KernelSum(vcat(ks.kernels, k), weights = vcat(ks.weights, 1.0))
Base.:+(ks::KernelSum, k::ScaledKernel) =
KernelSum(vcat(ks.kernels, kernel(k)), weights = vcat(ks.weights, first(k.σ²)))
Base.:+(ks::Kernel, k::ScaledKernel) =
KernelSum(vcat(ks, kernel(k)), weights = vcat(1.0, first(k.σ²)))
Base.:*(w::Real, k::KernelSum) = KernelSum(k.kernels, weights = w * k.weights) #TODO add tests
Base.:+(k1::Kernel, k2::Kernel) = KernelSum(k1, k2)

Base.length(k::KernelSum) = length(k.kernels)
nmetrics(κ::KernelSum) = metric(κ.κ₁) == metric(κ.κ₂) ? 2 : 1

kappa(κ::KernelSum, x, y) = sum(κ.weights[i] * kappa(κ.kernels[i], x, y) for i in 1:length(κ))
kappa(κ::KernelSum, x, y) = kappa(κ.κ₁, x, y) + kappa(κ.κ₂, x, y)

function kernelmatrix(κ::KernelSum, X::AbstractMatrix; obsdim::Int = defaultobs)
sum(κ.weights[i] * kernelmatrix(κ.kernels[i], X, obsdim = obsdim) for i in 1:length(κ))
kernelmatrix(κ.κ₁, X, obsdim = obsdim) + kernelmatrix(κ.κ₂, X, obsdim = obsdim)
end

function kernelmatrix(
Expand All @@ -58,25 +32,25 @@ function kernelmatrix(
Y::AbstractMatrix;
obsdim::Int = defaultobs,
)
sum(κ.weights[i] * _kernelmatrix(κ.kernels[i], X, Y, obsdim) for i in 1:length(κ))
kernelmatrix(κ.κ₁, X, Y, obsdim = obsdim) + kernelmatrix(κ.κ₂, X, Y, obsdim = obsdim)
end

function kerneldiagmatrix(
κ::KernelSum,
X::AbstractMatrix;
obsdim::Int = defaultobs,
)
sum(κ.weights[i] * kerneldiagmatrix(κ.kernels[i], X, obsdim = obsdim) for i in 1:length(κ))
kerneldiagmatrix(κ.κ₁, X, obsdim = obsdim) + kerneldiagmatrix(κ.κ₂, X, obsdim = obsdim)
end

function Base.show(io::IO, κ::KernelSum)
printshifted(io, κ, 0)
end

function printshifted(io::IO,κ::KernelSum, shift::Int)
print(io,"Sum of $(length(κ)) kernels:")
for i in 1:length(κ)
print(io, "\n" * ("\t" ^ (shift + 1)) * "- (w = $(κ.weights[i])) ")
printshifted(io, κ.kernels[i], shift + 2)
end
function printshifted(io::IO, κ::KernelSum, shift::Int)
print(io,"Kernel Sum :")
print(io, "\n" * ("\t" ^ (shift + 1)))
printshifted(io, κ.κ₁, shift + 2)
print(io, "\n" * ("\t" ^ (shift + 1)))
printshifted(io, κ.κ₂, shift + 2)
end
3 changes: 1 addition & 2 deletions test/kernels/kernelproduct.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,8 +7,7 @@
k2 = SqExponentialKernel()
k3 = RationalQuadraticKernel()

k = KernelProduct([k1,k2])
@test length(k) == 2
k = KernelProduct(k1, k2)
@test kappa(k,v1,v2) == kappa(k1*k2,v1,v2)
@test kappa(k*k,v1,v2) ≈ kappa(k,v1,v2)^2
@test kappa(k*k3,v1,v2) ≈ kappa(k3*k,v1,v2)
Expand Down
19 changes: 9 additions & 10 deletions test/kernels/kernelsum.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,16 +7,15 @@
k1 = LinearKernel()
k2 = SqExponentialKernel()
k3 = RationalQuadraticKernel()
X = rand(rng, 2,2)
X = rand(rng, 2, 2)

w = [2.0,0.5]
k = KernelSum([k1,k2],w)
ks1 = 2.0*k1
ks2 = 0.5*k2
@test length(k) == 2
@test kappa(k,v1,v2) == kappa(2.0*k1+0.5*k2,v1,v2)
@test kappa(k+k3,v1,v2) ≈ kappa(k3+k,v1,v2)
@test kappa(k1+k2,v1,v2) == kappa(KernelSum([k1,k2]),v1,v2)
@test kappa(k+ks1,v1,v2) ≈ kappa(ks1+k,v1,v2)
@test kappa(k+k,v1,v2) == kappa(KernelSum([k1,k2,k1,k2],vcat(w,w)),v1,v2)
k = KernelSum(k1, k2)
ks1 = 2.0 * k1
ks2 = 0.5 * k2
@test kappa(k, v1, v2) == kappa(2.0 * k1 + 0.5 * k2, v1, v2)
@test kappa(k + k3, v1, v2) ≈ kappa(k3 + k, v1, v2)
@test kappa(k1 + k2, v1, v2) == kappa(k, v1, v2)
@test kappa(k + ks1, v1, v2) ≈ kappa(ks1 + k, v1, v2)
# @test kappa(k+k,v1,v2) == kappa(KernelSum([k1,k2,k1,k2],vcat(w,w)),v1,v2)
end