Skip to content

Add i-times integrated Wiener Kernel #77

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 28 commits into from
Apr 30, 2020
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
Show all changes
28 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions src/KernelFunctions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,7 @@ export transform
export duplicate, set! # Helpers

export Kernel
export ConstantKernel, WhiteKernel, EyeKernel, ZeroKernel
export ConstantKernel, WhiteKernel, EyeKernel, ZeroKernel, WienerKernel
export SqExponentialKernel, ExponentialKernel, GammaExponentialKernel
export ExponentiatedKernel
export MaternKernel, Matern32Kernel, Matern52Kernel
Expand Down Expand Up @@ -46,7 +46,8 @@ include("distances/dotproduct.jl")
include("distances/delta.jl")
include("transform/transform.jl")

for k in ["exponential","matern","polynomial","constant","rationalquad","exponentiated","cosine","maha","fbm","gabor"]
for k in ["exponential","matern","polynomial","constant","rationalquad","exponentiated",
"cosine","maha","fbm","gabor","wiener"]
include(joinpath("kernels",k*".jl"))
end
include("kernels/transformedkernel.jl")
Expand Down
158 changes: 158 additions & 0 deletions src/kernels/wiener.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,158 @@
"""
WienerKernel{i}()

i-times integrated Wiener process kernel function given by
```julia
κ(x,y) = kᵢ(x,y)
```

For i=-1, this is just the white noise covariance, see WhiteKernel.\\
For i= 0, this is the Wiener process covariance,\\
for i= 1, this is the integrated Wiener process covariance (velocity),\\
for i= 2, this is the twice-integrated Wiener process covariance (accel.),\\
for i= 3, this is the thrice-integrated Wiener process covariance. where `kᵢ` is given by\\

```julia
k₋₁(x,y) = δ(x,y)
i >= 0, kᵢ(x,y) = 1/ai * min(x,y)^(2i + 1) + bi * min(x,y)^(i+1) * |x-y| * ri(x,y),
with the coefficients ai, bi and the residual ri(x,y) defined as follows:
i = 0, ai = 1, bi = 0
i = 1, ai = 3, bi = 1/ 2, ri(x,y) = 1
i = 2, ai = 20, bi = 1/ 12, ri(x,y) = x + y - 1/2 * min(x,y)
i = 3, ai = 252, bi = 1/720, ri(x,y) = 5 * max(x,y)² + 2xz + 3min(x,y)²
```

**References:**\\
See the paper *Probabilistic ODE Solvers with Runge-Kutta Means* by Schober, Duvenaud and Hennig, NIPS, 2014, for more details.

"""
struct WienerKernel{I} <: BaseKernel
function WienerKernel{I}() where I
I in (-1, 0, 1, 2, 3) || error("Invalid paramter i=$(I). Should be -1, 0, 1, 2 or 3.")
if I==-1
return WhiteKernel()
end
new{I}()
end
end

function WienerKernel(;i=0)
return WienerKernel{i}()
end

function _wiener(κ::WienerKernel{I},x,y) where I
X = sqrt(sum(abs2.(x)))
Y = sqrt(sum(abs2.(y)))
minXY = min(X,Y)
if I==0
return minXY^(2I + 1)
elseif I==1
return 1/3 * minXY^(2I + 1) + 1/2 * minXY^(I+1) * euclidean(x,y)
elseif I==2
return 1/20 * minXY^(2I + 1) + 1/12 * minXY^(I+1) * euclidean(x,y) * (X + Y - 1/2 * minXY)
elseif I==3
return 1/252 * minXY^(2I + 1) + 1/720 * minXY^(I+1) * euclidean(x,y) * (5*max(X,Y)^2 + 2*X*Y + 3 * minXY^2)
else
error("Invalid I")
end
end

function kappa(κ::WienerKernel, x,y)
return _wiener(κ, x, y)
end

(κ::WienerKernel)(x::Real, y::Real) = kappa(κ,x,y)

function _kernel(
κ::WienerKernel,
x::AbstractVector,
y::AbstractVector;
obsdim::Int = defaultobs
)
@assert length(x) == length(y) "x and y don't have the same dimension!"
kappa(κ,x,y)
end

function kernelmatrix!(
K::AbstractMatrix,
κ::WienerKernel,
X::AbstractMatrix,
Y::AbstractMatrix;
obsdim::Int = defaultobs
)
@assert obsdim ∈ [1,2] "obsdim should be 1 or 2 (see docs of kernelmatrix))"
if !check_dims(K,X,X,feature_dim(obsdim),obsdim)
throw(DimensionMismatch("Dimensions of the target array K $(size(K)) are not consistent with X $(size(X))"))
end

if obsdim == 1
for j = 1:size(K,2)
for i = 1:size(K,1)
@inbounds @views K[i,j] = _kernel(κ, X[i,:],Y[j,:])
end
end
else
for j = 1:size(K,2)
for i = 1:size(K,1)
@inbounds @views K[i,j] = _kernel(κ, X[:,i],Y[:,j])
end
end
end
return K
end

function kernelmatrix(
κ::WienerKernel,
X::AbstractMatrix,
Y::AbstractMatrix;
obsdim::Int = defaultobs
)
@assert obsdim ∈ [1,2] "obsdim should be 1 or 2 (see docs of kernelmatrix))"
if !check_dims(X,Y,feature_dim(obsdim),obsdim)
throw(DimensionMismatch("X $(size(X)) and Y $(size(Y)) do not have the same number of features on the dimension : $(feature_dim(obsdim))"))
end
if obsdim == 1
outdim = size(X,1)
else
outdim = size(X,2)
end
K = zeros(outdim,outdim)
if obsdim == 1
for j = 1:size(K,2)
for i = 1:size(K,1)
@inbounds @views K[i,j] = _kernel(κ, X[i,:],Y[j,:])
end
end
else
for j = 1:size(K,2)
for i = 1:size(K,1)
@inbounds @views K[i,j] = _kernel(κ, X[:,i],Y[:,j])
end
end
end
return K
end

function kernelmatrix!(
K::AbstractMatrix,
κ::WienerKernel,
X::AbstractMatrix;
obsdim::Int = defaultobs
)
@assert obsdim ∈ [1,2] "obsdim should be 1 or 2 (see docs of kernelmatrix))"
if !check_dims(K,X,X,feature_dim(obsdim),obsdim)
throw(DimensionMismatch("Dimensions of the target array K $(size(K)) are not consistent with X $(size(X))"))
end
kernelmatrix!(K,κ,X,X;obsdim=obsdim)
return K
end

function kernelmatrix(
κ::WienerKernel,
X::AbstractMatrix;
obsdim::Int = defaultobs
)
return kernelmatrix(κ,X,X;obsdim=obsdim)
end

Base.show(io::IO, κ::WienerKernel{I}) where I = print(io, "Wiener Kernel $(I)-times integrated")
46 changes: 46 additions & 0 deletions test/kernels/wiener.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
@testset "wiener" begin
k_1 = WienerKernel(i=-1)
@test typeof(k_1) <: WhiteKernel

k0 = WienerKernel()
@test typeof(k0) <: WienerKernel{0}

k1 = WienerKernel(i=1)
@test typeof(k1) <: WienerKernel{1}

k2 = WienerKernel(i=2)
@test typeof(k2) <: WienerKernel{2}

k3 = WienerKernel(i=3)
@test typeof(k3) <: WienerKernel{3}

@test_throws ErrorException WienerKernel(i=4)
@test_throws ErrorException WienerKernel(i=-2)

v1 = rand(3); v2 = rand(3)
@test k0(v1,v2) ≈ kappa(k0,v1,v2)
@test k1(v1,v2) ≈ kappa(k1,v1,v2)
@test k2(v1,v2) ≈ kappa(k2,v1,v2)
@test k3(v1,v2) ≈ kappa(k3,v1,v2)

# kernelmatrix tests
m1 = rand(3,4)
m2 = rand(3,4)
@test kernelmatrix(k0, m1, m1) ≈ kernelmatrix(k0, m1) atol=1e-5
@test kernelmatrix(k0, m1, m2) ≈ k0(m1, m2) atol=1e-5

K = zeros(4,4)
kernelmatrix!(K,k0,m1,m2)
@test K ≈ kernelmatrix(k0, m1, m2) atol=1e-5

V = zeros(4)
kerneldiagmatrix!(V,k0,m1)
@test V ≈ kerneldiagmatrix(k0,m1) atol=1e-5

x1 = rand()
x2 = rand()
@test kernelmatrix(k0, x1*ones(1,1), x2*ones(1,1))[1] ≈ k0(x1, x2) atol=1e-5
@test kernelmatrix(k1, x1*ones(1,1), x2*ones(1,1))[1] ≈ k1(x1, x2) atol=1e-5
@test kernelmatrix(k2, x1*ones(1,1), x2*ones(1,1))[1] ≈ k2(x1, x2) atol=1e-5
@test kernelmatrix(k3, x1*ones(1,1), x2*ones(1,1))[1] ≈ k3(x1, x2) atol=1e-5
end
1 change: 1 addition & 0 deletions test/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,7 @@ using KernelFunctions: metric

@testset "kernels" begin
include(joinpath("kernels", "constant.jl"))
include(joinpath("kernels", "wiener.jl"))
include(joinpath("kernels", "cosine.jl"))
include(joinpath("kernels", "exponential.jl"))
include(joinpath("kernels", "exponentiated.jl"))
Expand Down