Skip to content

Remove _kernel, sort out kappa #95

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 20 commits into from
Apr 25, 2020
Merged
Show file tree
Hide file tree
Changes from 8 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 3 additions & 2 deletions docs/src/userguide.md
Original file line number Diff line number Diff line change
Expand Up @@ -27,8 +27,9 @@ To premultiply the kernel by a variance, you can use `*` or create a `ScaledKern
To compute the kernel function on two vectors you can call
```julia
k = SqExponentialKernel()
x1 = rand(3); x2 = rand(3)
kappa(k,x1,x2) == k(x1,x2) # Syntactic sugar
x1 = rand(3)
x2 = rand(3)
k(x1,x2)
```

## Creating a kernel matrix
Expand Down
10 changes: 2 additions & 8 deletions src/KernelFunctions.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@ KernelFunctions. [Github](https://github.com/JuliaGaussianProcesses/KernelFuncti
"""
module KernelFunctions

export kernelmatrix, kernelmatrix!, kerneldiagmatrix, kerneldiagmatrix!, kappa
export kernelmatrix, kernelmatrix!, kerneldiagmatrix, kerneldiagmatrix!
export transform
export duplicate, set! # Helpers

Expand Down Expand Up @@ -38,13 +38,7 @@ using StatsBase

const defaultobs = 2

"""
Abstract type defining a slice-wise transformation on an input matrix
"""
abstract type Transform end
abstract type Kernel end
abstract type BaseKernel <: Kernel end
abstract type SimpleKernel <: BaseKernel end
include("abstract_types.jl")

include("utils.jl")
include("distances/dotproduct.jl")
Expand Down
11 changes: 11 additions & 0 deletions src/abstract_types.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@

"""
Abstract type defining a slice-wise transformation on an input matrix
"""
abstract type Transform end

abstract type Kernel end
abstract type BaseKernel <: Kernel end
abstract type SimpleKernel <: BaseKernel end

(k::SimpleKernel)(x, y) = kappa(k, evaluate(metric(k), x, y))
2 changes: 1 addition & 1 deletion src/approximations/nystrom.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ end
function nystrom_sample(k::Kernel, X::AbstractMatrix, S::Vector{<:Integer}; obsdim::Integer=defaultobs)
obsdim ∈ [1, 2] || throw(ArgumentError("`obsdim` should be 1 or 2 (see docs of kernelmatrix))"))
Xₘ = obsdim == 1 ? X[S, :] : X[:, S]
C = k(Xₘ, X; obsdim=obsdim)
C = kernelmatrix(k, Xₘ, X; obsdim=obsdim)
Cs = C[:, S]
return (C, Cs)
end
Expand Down
1 change: 1 addition & 0 deletions src/basekernels/cosine.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ The cosine kernel is a stationary kernel for a sinusoidal given by
struct CosineKernel <: SimpleKernel end

kappa(κ::CosineKernel, d::Real) = cospi(d)

metric(::CosineKernel) = Euclidean()

Base.show(io::IO, ::CosineKernel) = print(io, "Cosine Kernel")
12 changes: 9 additions & 3 deletions src/basekernels/exponential.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,9 +12,11 @@ related form of the kernel or [`GammaExponentialKernel`](@ref) for a generalizat
struct SqExponentialKernel <: SimpleKernel end

kappa(κ::SqExponentialKernel, d²::Real) = exp(-d²)
iskroncompatible(::SqExponentialKernel) = true

metric(::SqExponentialKernel) = SqEuclidean()

iskroncompatible(::SqExponentialKernel) = true

Base.show(io::IO,::SqExponentialKernel) = print(io,"Squared Exponential Kernel")

## Aliases ##
Expand All @@ -33,9 +35,11 @@ The exponential kernel is a Mercer kernel given by the formula:
struct ExponentialKernel <: SimpleKernel end

kappa(κ::ExponentialKernel, d::Real) = exp(-d)
iskroncompatible(::ExponentialKernel) = true

metric(::ExponentialKernel) = Euclidean()

iskroncompatible(::ExponentialKernel) = true

Base.show(io::IO, ::ExponentialKernel) = print(io, "Exponential Kernel")

## Alias ##
Expand All @@ -60,7 +64,9 @@ struct GammaExponentialKernel{Tγ<:Real} <: SimpleKernel
end

kappa(κ::GammaExponentialKernel, d²::Real) = exp(-d²^first(κ.γ))
iskroncompatible(::GammaExponentialKernel) = true

metric(::GammaExponentialKernel) = SqEuclidean()

iskroncompatible(::GammaExponentialKernel) = true

Base.show(io::IO, κ::GammaExponentialKernel) = print(io, "Gamma Exponential Kernel (γ = ", first(κ.γ), ")")
2 changes: 2 additions & 0 deletions src/basekernels/exponentiated.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,7 +9,9 @@ The exponentiated kernel is a Mercer kernel given by:
struct ExponentiatedKernel <: SimpleKernel end

kappa(κ::ExponentiatedKernel, xᵀy::Real) = exp(xᵀy)

metric(::ExponentiatedKernel) = DotProduct()

iskroncompatible(::ExponentiatedKernel) = true

Base.show(io::IO, ::ExponentiatedKernel) = print(io, "Exponentiated Kernel")
20 changes: 10 additions & 10 deletions src/basekernels/fbm.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,16 @@ struct FBMKernel{T<:Real} <: BaseKernel
end
end

function (κ::FBMKernel)(x::AbstractVector{<:Real}, y::AbstractVector{<:Real})
modX = sum(abs2, x)
modY = sum(abs2, y)
modXY = evaluate(SqEuclidean(sqroundoff), x, y)
h = first(κ.h)
return (modX^h + modY^h - modXY^h)/2
end

(κ::FBMKernel)(x::Real, y::Real) = (abs2(x)^first(κ.h) + abs2(y)^first(κ.h) - abs2(x-y)^first(κ.h))/2

Base.show(io::IO, κ::FBMKernel) = print(io, "Fractional Brownian Motion Kernel (h = ", first(κ.h), ")")

const sqroundoff = 1e-15
Expand Down Expand Up @@ -65,13 +75,3 @@ function kernelmatrix!(
K .= _fbm.(vec(modX), reshape(modY, 1, :), modXY, κ.h)
return K
end

function kappa(κ::FBMKernel, x::AbstractVector{<:Real}, y::AbstractVector{<:Real})
modX = sum(abs2, x)
modY = sum(abs2, y)
modXY = evaluate(SqEuclidean(sqroundoff), x, y)
h = first(κ.h)
return (modX^h + modY^h - modXY^h)/2
end

(κ::FBMKernel)(x::Real, y::Real) = (abs2(x)^first(κ.h) + abs2(y)^first(κ.h) - abs2(x-y)^first(κ.h))/2
4 changes: 2 additions & 2 deletions src/basekernels/gabor.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,8 @@ struct GaborKernel{K<:Kernel} <: BaseKernel
end
end

(κ::GaborKernel)(x, y) = κ.kernel(x ,y)

function _gabor(; ell = nothing, p = nothing)
if ell === nothing
if p === nothing
Expand Down Expand Up @@ -53,8 +55,6 @@ end

Base.show(io::IO, κ::GaborKernel) = print(io, "Gabor Kernel (ell = ", κ.ell, ", p = ", κ.p, ")")

kappa(κ::GaborKernel, x, y) = kappa(κ.kernel, x ,y)

function kernelmatrix(
κ::GaborKernel,
X::AbstractMatrix;
Expand Down
1 change: 1 addition & 0 deletions src/basekernels/maha.jl
Original file line number Diff line number Diff line change
Expand Up @@ -17,6 +17,7 @@ struct MahalanobisKernel{T<:Real, A<:AbstractMatrix{T}} <: SimpleKernel
end

kappa(κ::MahalanobisKernel, d::T) where {T<:Real} = exp(-d)

metric(κ::MahalanobisKernel) = SqMahalanobis(κ.P)

Base.show(io::IO, κ::MahalanobisKernel) = print(io, "Mahalanobis Kernel (size(P) = ", size(κ.P), ")")
2 changes: 2 additions & 0 deletions src/basekernels/matern.jl
Original file line number Diff line number Diff line change
Expand Up @@ -40,6 +40,7 @@ The matern 3/2 kernel is a Mercer kernel given by the formula:
struct Matern32Kernel <: SimpleKernel end

kappa(κ::Matern32Kernel, d::Real) = (1 + sqrt(3) * d) * exp(-sqrt(3) * d)

metric(::Matern32Kernel) = Euclidean()

Base.show(io::IO, ::Matern32Kernel) = print(io, "Matern 3/2 Kernel")
Expand All @@ -55,6 +56,7 @@ The matern 5/2 kernel is a Mercer kernel given by the formula:
struct Matern52Kernel <: SimpleKernel end

kappa(κ::Matern52Kernel, d::Real) = (1 + sqrt(5) * d + 5 * d^2 / 3) * exp(-sqrt(5) * d)

metric(::Matern52Kernel) = Euclidean()

Base.show(io::IO, ::Matern52Kernel) = print(io, "Matern 5/2 Kernel")
4 changes: 3 additions & 1 deletion src/basekernels/polynomial.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ struct LinearKernel{Tc<:Real} <: SimpleKernel
end

kappa(κ::LinearKernel, xᵀy::Real) = xᵀy + first(κ.c)

metric(::LinearKernel) = DotProduct()

Base.show(io::IO, κ::LinearKernel) = print(io, "Linear Kernel (c = ", first(κ.c), ")")
Expand All @@ -37,7 +38,8 @@ struct PolynomialKernel{Td<:Real, Tc<:Real} <: SimpleKernel
end
end

kappa(κ::PolynomialKernel, xᵀy::T) where {T<:Real} = (xᵀy + first(κ.c))^(first(κ.d))
kappa(κ::PolynomialKernel, xᵀy::Real) = (xᵀy + first(κ.c))^(first(κ.d))

metric(::PolynomialKernel) = DotProduct()

Base.show(io::IO, κ::PolynomialKernel) = print(io, "Polynomial Kernel (c = ", first(κ.c), ", d = ", first(κ.d), ")")
8 changes: 6 additions & 2 deletions src/basekernels/rationalquad.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,8 @@ struct RationalQuadraticKernel{Tα<:Real} <: SimpleKernel
end
end

kappa(κ::RationalQuadraticKernel, d²::T) where {T<:Real} = (one(T)+d²/first(κ.α))^(-first(κ.α))
kappa(κ::RationalQuadraticKernel, d²::Real) = (1 + d² / first(κ.α))^(-first(κ.α))

metric(::RationalQuadraticKernel) = SqEuclidean()

Base.show(io::IO, κ::RationalQuadraticKernel) = print(io, "Rational Quadratic Kernel (α = ", first(κ.α), ")")
Expand All @@ -38,7 +39,10 @@ struct GammaRationalQuadraticKernel{Tα<:Real, Tγ<:Real} <: SimpleKernel
end
end

kappa(κ::GammaRationalQuadraticKernel, d²::T) where {T<:Real} = (one(T)+d²^first(κ.γ)/first(κ.α))^(-first(κ.α))
function kappa(κ::GammaRationalQuadraticKernel, d²::Real)
return (1 + d²^first(κ.γ) / first(κ.α))^(-first(κ.α))
end

metric(::GammaRationalQuadraticKernel) = SqEuclidean()

Base.show(io::IO, κ::GammaRationalQuadraticKernel) = print(io, "Gamma Rational Quadratic Kernel (α = ", first(κ.α), ", γ = ", first(κ.γ), ")")
16 changes: 0 additions & 16 deletions src/generic.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,14 +3,6 @@ Base.length(::Kernel) = 1
Base.iterate(k::Kernel) = (k,nothing)
Base.iterate(k::Kernel, ::Any) = nothing

# default fallback for evaluating a kernel with two arguments (such as vectors etc)
kappa(κ::Kernel, x, y) = kappa(κ, evaluate(metric(κ), x, y))
kappa(κ::TransformedKernel, x, y) = kappa(kernel(κ), apply(κ.transform,x), apply(κ.transform,y))
kappa(κ::TransformedKernel{<:BaseKernel,<:ScaleTransform}, x, y) = kappa(κ, _scale(κ.transform, metric(κ), x, y))
_scale(t::ScaleTransform, metric::Euclidean, x, y) = first(t.s) * evaluate(metric, x, y)
_scale(t::ScaleTransform, metric::Union{SqEuclidean,DotProduct}, x, y) = first(t.s)^2 * evaluate(metric, x, y)
_scale(t::ScaleTransform, metric, x, y) = evaluate(metric, apply(t, x), apply(t, y))

printshifted(io::IO, o, shift::Int) = print(io, o)
Base.show(io::IO, κ::Kernel) = print(io, nameof(typeof(κ)))

Expand All @@ -20,14 +12,6 @@ function concretetypes(k, ktypes::Vector)
return ktypes
end

for k in concretetypes(Kernel, [])
@eval begin
@inline (κ::$k)(x, y) = kappa(κ, x, y)
@inline (κ::$k)(X::AbstractMatrix{T}, Y::AbstractMatrix{T}; obsdim::Integer=defaultobs) where {T} = kernelmatrix(κ, X, Y, obsdim=obsdim)
@inline (κ::$k)(X::AbstractMatrix{T}; obsdim::Integer=defaultobs) where {T} = kernelmatrix(κ, X, obsdim=obsdim)
end
end

for k in nameof.(subtypes(BaseKernel))
@eval begin
@deprecate($k(ρ::Real;args...),transform($k(args...),ρ))
Expand Down
2 changes: 1 addition & 1 deletion src/kernels/kernelproduct.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,7 +22,7 @@ Base.:*(kp::KernelProduct,k::Kernel) = KernelProduct(vcat(kp.kernels,k))

Base.length(k::KernelProduct) = length(k.kernels)

kappa(κ::KernelProduct, x ,y) = prod(kappa(k, x, y) for k in κ.kernels)
(κ::KernelProduct)(x, y) = prod(k(x, y) for k in κ.kernels)

hadamard(x,y) = x.*y

Expand Down
2 changes: 1 addition & 1 deletion src/kernels/kernelsum.jl
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ Base.:*(w::Real, k::KernelSum) = KernelSum(k.kernels, weights = w * k.weights) #

Base.length(k::KernelSum) = length(k.kernels)

kappa(κ::KernelSum, x, y) = sum(κ.weights[i] * kappa(κ.kernels[i], x, y) for i in 1:length(κ))
(κ::KernelSum)(x, y) = sum(κ.weights[i] * κ.kernels[i](x, y) for i in 1:length(κ))

function kernelmatrix(κ::KernelSum, X::AbstractMatrix; obsdim::Int = defaultobs)
sum(κ.weights[i] * kernelmatrix(κ.kernels[i], X, obsdim = obsdim) for i in 1:length(κ))
Expand Down
2 changes: 1 addition & 1 deletion src/kernels/scaledkernel.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@ end

kappa(k::ScaledKernel, x) = first(k.σ²) * kappa(k.kernel, x)

kappa(k::ScaledKernel, x, y) = first(k.σ²) * kappa(k.kernel, x, y)
(k::ScaledKernel)(x, y) = first(k.σ²) * k.kernel(x, y)

metric(k::ScaledKernel) = metric(k.kernel)

Expand Down
4 changes: 2 additions & 2 deletions src/kernels/tensorproduct.jl
Original file line number Diff line number Diff line change
Expand Up @@ -22,8 +22,8 @@ end

Base.length(kernel::TensorProduct) = length(kernel.kernels)

function kappa(kernel::TensorProduct, x, y)
return prod(kappa(k, xi, yi) for (k, xi, yi) in zip(kernel.kernels, x, y))
function (kernel::TensorProduct)(x, y)
return prod(k(xi, yi) for (k, xi, yi) in zip(kernel.kernels, x, y))
end

# TODO: General implementation of `kernelmatrix` and `kerneldiagmatrix`
Expand Down
10 changes: 6 additions & 4 deletions src/kernels/transformedkernel.jl
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,12 @@ struct TransformedKernel{Tk<:Kernel,Tr<:Transform} <: Kernel
transform::Tr
end

function (k::TransformedKernel)(x, y)
x′ = vec(apply(k.transform, reshape(x, :, 1); obsdim=2))
y′ = vec(apply(k.transform, reshape(y, :, 1); obsdim=2))
return k.kernel(x′, y′)
end

"""
```julia
transform(k::BaseKernel, t::Transform) (1)
Expand All @@ -29,10 +35,6 @@ transform(k::BaseKernel,ρ::AbstractVector) = TransformedKernel(k, ARDTransform(

kernel(κ) = κ.kernel

kappa(κ::TransformedKernel, x) = kappa(κ.kernel, x)

metric(κ::TransformedKernel) = metric(κ.kernel)

Base.show(io::IO, κ::TransformedKernel) = printshifted(io, κ, 0)

function printshifted(io::IO, κ::TransformedKernel, shift::Int)
Expand Down
3 changes: 3 additions & 0 deletions test/abstract_types.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,3 @@
@testset "abstract_types" begin

end
1 change: 0 additions & 1 deletion test/basekernels/fbm.jl
Original file line number Diff line number Diff line change
Expand Up @@ -8,7 +8,6 @@
m1 = rand(3,3)
m2 = rand(3,3)
@test kernelmatrix(k, m1, m1) ≈ kernelmatrix(k, m1) atol=1e-5
@test kernelmatrix(k, m1, m2) ≈ k(m1, m2) atol=1e-5


x1 = rand()
Expand Down
9 changes: 7 additions & 2 deletions test/basekernels/gabor.jl
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,13 @@
k = GaborKernel(ell=ell, p=p)
@test k.ell ≈ ell atol=1e-5
@test k.p ≈ p atol=1e-5
@test kappa(k,v1,v2) ≈ exp(-sqeuclidean(v1,v2) ./(k.ell.^2))*cospi(euclidean(v1,v2)./ k.p) atol=1e-5
@test kappa(k,v1,v2) ≈ kappa(transform(SqExponentialKernel(), 1/k.ell),v1,v2)*kappa(transform(CosineKernel(), 1/k.p), v1,v2) atol=1e-5

k_manual = exp(-sqeuclidean(v1, v2) / (k.ell^2)) * cospi(euclidean(v1, v2) / k.p)
@test k(v1,v2) ≈ k_manual atol=1e-5

lhs_manual = transform(SqExponentialKernel(), 1/k.ell)(v1,v2)
rhs_manual = transform(CosineKernel(), 1/k.p)(v1,v2)
@test k(v1,v2) ≈ lhs_manual * rhs_manual atol=1e-5

k = GaborKernel()
@test k.ell ≈ 1.0 atol=1e-5
Expand Down
1 change: 0 additions & 1 deletion test/basekernels/piecewisepolynomial.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,6 @@

@test k2(v1, v2) ≈ k(v1, v2) atol=1e-5

@test k(v1, v2) ≈ kappa(k, v1, v2) atol=1e-5
@test typeof(k(v1, v2)) <: Real
@test size(kernelmatrix(k, m1, m2)) == (4, 4)
@test size(kernelmatrix(k, m1)) == (4, 4)
Expand Down
11 changes: 0 additions & 11 deletions test/kernels/custom.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,19 +4,8 @@ struct MyKernel <: SimpleKernel end
KernelFunctions.kappa(::MyKernel, d2::Real) = exp(-d2)
KernelFunctions.metric(::MyKernel) = SqEuclidean()

# some syntactic sugar
(κ::MyKernel)(x::AbstractVector{<:Real}, y::AbstractVector{<:Real}) = kappa(κ, x, y)
(κ::MyKernel)(X::AbstractMatrix{<:Real}, Y::AbstractMatrix{<:Real}; obsdim = 2) = kernelmatrix(κ, X, Y; obsdim = obsdim)
(κ::MyKernel)(X::AbstractMatrix{<:Real}; obsdim = 2) = kernelmatrix(κ, X; obsdim = obsdim)

@testset "custom" begin
@test kappa(MyKernel(), 3) == kappa(SqExponentialKernel(), 3)
@test kappa(MyKernel(), 1, 3) == kappa(SqExponentialKernel(), 1, 3)
@test kappa(MyKernel(), [1, 2], [3, 4]) == kappa(SqExponentialKernel(), [1, 2], [3, 4])
@test kernelmatrix(MyKernel(), [1 2; 3 4], [5 6; 7 8]) == kernelmatrix(SqExponentialKernel(), [1 2; 3 4], [5 6; 7 8])
@test kernelmatrix(MyKernel(), [1 2; 3 4]) == kernelmatrix(SqExponentialKernel(), [1 2; 3 4])

@test MyKernel()([1, 2], [3, 4]) == SqExponentialKernel()([1, 2], [3, 4])
@test MyKernel()([1 2; 3 4], [5 6; 7 8]) == SqExponentialKernel()([1 2; 3 4], [5 6; 7 8])
@test MyKernel()([1 2; 3 4]) == SqExponentialKernel()([1 2; 3 4])
end
8 changes: 4 additions & 4 deletions test/kernels/kernelproduct.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,9 +7,9 @@
k2 = SqExponentialKernel()
k3 = RationalQuadraticKernel()

k = KernelProduct([k1,k2])
k = KernelProduct([k1, k2])
@test length(k) == 2
@test kappa(k,v1,v2) == kappa(k1*k2,v1,v2)
@test kappa(k*k,v1,v2) ≈ kappa(k,v1,v2)^2
@test kappa(k*k3,v1,v2) ≈ kappa(k3*k,v1,v2)
@test k(v1, v2) == (k1 * k2)(v1, v2)
@test (k * k)(v1, v2) ≈ k(v1, v2)^2
@test (k * k3)(v1, v2) ≈ (k3 * k)(v1, v2)
end
Loading