Skip to content

Update tempdir logic in examples and fix CI issue #900

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 5 commits into from
Aug 13, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
94 changes: 47 additions & 47 deletions examples/segmentation_3d/unet_evaluation_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,62 +28,62 @@
from monai.transforms import AddChannel, Compose, ScaleIntensity, ToTensor


def main():
def main(tempdir):
config.print_config()
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

with tempfile.TemporaryDirectory() as tempdir:
print(f"generating synthetic data to {tempdir} (this may take a while)")
for i in range(5):
im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)
print(f"generating synthetic data to {tempdir} (this may take a while)")
for i in range(5):
im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1)

n = nib.Nifti1Image(im, np.eye(4))
nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))
n = nib.Nifti1Image(im, np.eye(4))
nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

n = nib.Nifti1Image(seg, np.eye(4))
nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))
n = nib.Nifti1Image(seg, np.eye(4))
nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))

# define transforms for image and segmentation
imtrans = Compose([ScaleIntensity(), AddChannel(), ToTensor()])
segtrans = Compose([AddChannel(), ToTensor()])
val_ds = NiftiDataset(images, segs, transform=imtrans, seg_transform=segtrans, image_only=False)
# sliding window inference for one image at every iteration
val_loader = DataLoader(val_ds, batch_size=1, num_workers=1, pin_memory=torch.cuda.is_available())
dice_metric = DiceMetric(include_background=True, to_onehot_y=False, sigmoid=True, reduction="mean")
# define transforms for image and segmentation
imtrans = Compose([ScaleIntensity(), AddChannel(), ToTensor()])
segtrans = Compose([AddChannel(), ToTensor()])
val_ds = NiftiDataset(images, segs, transform=imtrans, seg_transform=segtrans, image_only=False)
# sliding window inference for one image at every iteration
val_loader = DataLoader(val_ds, batch_size=1, num_workers=1, pin_memory=torch.cuda.is_available())
dice_metric = DiceMetric(include_background=True, to_onehot_y=False, sigmoid=True, reduction="mean")

device = torch.device("cuda:0")
model = UNet(
dimensions=3,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(device)
device = torch.device("cuda:0")
model = UNet(
dimensions=3,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(device)

model.load_state_dict(torch.load("best_metric_model.pth"))
model.eval()
with torch.no_grad():
metric_sum = 0.0
metric_count = 0
saver = NiftiSaver(output_dir="./output")
for val_data in val_loader:
val_images, val_labels = val_data[0].to(device), val_data[1].to(device)
# define sliding window size and batch size for windows inference
roi_size = (96, 96, 96)
sw_batch_size = 4
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
value = dice_metric(y_pred=val_outputs, y=val_labels)
metric_count += len(value)
metric_sum += value.item() * len(value)
val_outputs = (val_outputs.sigmoid() >= 0.5).float()
saver.save_batch(val_outputs, val_data[2])
metric = metric_sum / metric_count
print("evaluation metric:", metric)
model.load_state_dict(torch.load("best_metric_model.pth"))
model.eval()
with torch.no_grad():
metric_sum = 0.0
metric_count = 0
saver = NiftiSaver(output_dir="./output")
for val_data in val_loader:
val_images, val_labels = val_data[0].to(device), val_data[1].to(device)
# define sliding window size and batch size for windows inference
roi_size = (96, 96, 96)
sw_batch_size = 4
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
value = dice_metric(y_pred=val_outputs, y=val_labels)
metric_count += len(value)
metric_sum += value.item() * len(value)
val_outputs = (val_outputs.sigmoid() >= 0.5).float()
saver.save_batch(val_outputs, val_data[2])
metric = metric_sum / metric_count
print("evaluation metric:", metric)


if __name__ == "__main__":
main()
with tempfile.TemporaryDirectory() as tempdir:
main(tempdir)
132 changes: 66 additions & 66 deletions examples/segmentation_3d/unet_evaluation_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,75 +29,75 @@
from monai.transforms import AsChannelFirstd, Compose, LoadNiftid, ScaleIntensityd, ToTensord


def main():
def main(tempdir):
monai.config.print_config()
logging.basicConfig(stream=sys.stdout, level=logging.INFO)

with tempfile.TemporaryDirectory() as tempdir:
print(f"generating synthetic data to {tempdir} (this may take a while)")
for i in range(5):
im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)

n = nib.Nifti1Image(im, np.eye(4))
nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

n = nib.Nifti1Image(seg, np.eye(4))
nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)]

# define transforms for image and segmentation
val_transforms = Compose(
[
LoadNiftid(keys=["img", "seg"]),
AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
ScaleIntensityd(keys="img"),
ToTensord(keys=["img", "seg"]),
]
)
val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
# sliding window inference need to input 1 image in every iteration
val_loader = DataLoader(val_ds, batch_size=1, num_workers=4, collate_fn=list_data_collate)
dice_metric = DiceMetric(include_background=True, to_onehot_y=False, sigmoid=True, reduction="mean")

# try to use all the available GPUs
devices = get_devices_spec(None)
model = UNet(
dimensions=3,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(devices[0])

model.load_state_dict(torch.load("best_metric_model.pth"))

# if we have multiple GPUs, set data parallel to execute sliding window inference
if len(devices) > 1:
model = torch.nn.DataParallel(model, device_ids=devices)

model.eval()
with torch.no_grad():
metric_sum = 0.0
metric_count = 0
saver = NiftiSaver(output_dir="./output")
for val_data in val_loader:
val_images, val_labels = val_data["img"].to(devices[0]), val_data["seg"].to(devices[0])
# define sliding window size and batch size for windows inference
roi_size = (96, 96, 96)
sw_batch_size = 4
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
value = dice_metric(y_pred=val_outputs, y=val_labels)
metric_count += len(value)
metric_sum += value.item() * len(value)
val_outputs = (val_outputs.sigmoid() >= 0.5).float()
saver.save_batch(val_outputs, val_data["img_meta_dict"])
metric = metric_sum / metric_count
print("evaluation metric:", metric)
print(f"generating synthetic data to {tempdir} (this may take a while)")
for i in range(5):
im, seg = create_test_image_3d(128, 128, 128, num_seg_classes=1, channel_dim=-1)

n = nib.Nifti1Image(im, np.eye(4))
nib.save(n, os.path.join(tempdir, f"im{i:d}.nii.gz"))

n = nib.Nifti1Image(seg, np.eye(4))
nib.save(n, os.path.join(tempdir, f"seg{i:d}.nii.gz"))

images = sorted(glob(os.path.join(tempdir, "im*.nii.gz")))
segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))
val_files = [{"img": img, "seg": seg} for img, seg in zip(images, segs)]

# define transforms for image and segmentation
val_transforms = Compose(
[
LoadNiftid(keys=["img", "seg"]),
AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
ScaleIntensityd(keys="img"),
ToTensord(keys=["img", "seg"]),
]
)
val_ds = monai.data.Dataset(data=val_files, transform=val_transforms)
# sliding window inference need to input 1 image in every iteration
val_loader = DataLoader(val_ds, batch_size=1, num_workers=4, collate_fn=list_data_collate)
dice_metric = DiceMetric(include_background=True, to_onehot_y=False, sigmoid=True, reduction="mean")

# try to use all the available GPUs
devices = get_devices_spec(None)
model = UNet(
dimensions=3,
in_channels=1,
out_channels=1,
channels=(16, 32, 64, 128, 256),
strides=(2, 2, 2, 2),
num_res_units=2,
).to(devices[0])

model.load_state_dict(torch.load("best_metric_model.pth"))

# if we have multiple GPUs, set data parallel to execute sliding window inference
if len(devices) > 1:
model = torch.nn.DataParallel(model, device_ids=devices)

model.eval()
with torch.no_grad():
metric_sum = 0.0
metric_count = 0
saver = NiftiSaver(output_dir="./output")
for val_data in val_loader:
val_images, val_labels = val_data["img"].to(devices[0]), val_data["seg"].to(devices[0])
# define sliding window size and batch size for windows inference
roi_size = (96, 96, 96)
sw_batch_size = 4
val_outputs = sliding_window_inference(val_images, roi_size, sw_batch_size, model)
value = dice_metric(y_pred=val_outputs, y=val_labels)
metric_count += len(value)
metric_sum += value.item() * len(value)
val_outputs = (val_outputs.sigmoid() >= 0.5).float()
saver.save_batch(val_outputs, val_data["img_meta_dict"])
metric = metric_sum / metric_count
print("evaluation metric:", metric)


if __name__ == "__main__":
main()
with tempfile.TemporaryDirectory() as tempdir:
main(tempdir)
Loading