Skip to content

Commit d9953da

Browse files
committed
br
Signed-off-by: myron <[email protected]>
1 parent 5c426ae commit d9953da

File tree

4 files changed

+14330
-0
lines changed

4 files changed

+14330
-0
lines changed

auto3dseg/tasks/brats23/README.md

Lines changed: 50 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,50 @@
1+
2+
# BRATS23
3+
4+
The BRATS23 dataset is from MICCAI 2023 challenge **[The International Brain Tumor Segmentation 2023 (BraTS23)](https://www.synapse.org/brats)**, which includes several 5 tumor segmentation sub-challenges: Adult Glioma, Metastases, Meningioma, Pediatric, Sub-saharan african. Each sub-challenge includes its own large datasets, with each case consisting of 4 brain MRIs (T1, T1c, T2, FLAIR). The solution described here won the 1st place in the Metastasis, Meningioma and Sub-saharan african tumor segmentation challenges, and got 2nd place in the remaining Glioma (adult) and Pediatric glioma challenges.
5+
6+
Andriy Myronenko, Dong Yang, Yufan He and Daguang Xu: "Auto3DSeg for Brain Turmor Segmentation from 3D MRI in BraTS 2023 Challenge". In MICCAI (2023). [arXiv](https://arxiv.org/)
7+
8+
![brats23_example](./brats23_gli_0.png)
9+
10+
## Task overview
11+
12+
The task is to segment 3 brain tumor substructures: whole tumor (WT) - all labeled areas, tumor core (TC) - red and blue labels in the example, enhancing tumor (ET) - blue label. Please see the challenge description for the anatomical characteristics of each tumor sub-region [2]. Each case includes 4 MRI modalities spatially aligned and resampled to 1x1x1mm resolution by the organizers.
13+
14+
15+
## Auto3DSeg
16+
17+
The BRATS tutorial is only supported for **SegResNet** algo, Auto3DSeg runs a full workflow including data analysis, and multi-fold training. Please download the dataset into /data/brats23 folder first.
18+
19+
20+
### Running based on the input config
21+
22+
The Auto3DSeg can be run using a config **input.yaml**
23+
24+
```bash
25+
python -m monai.apps.auto3dseg AutoRunner run --input=./input.yaml --algos=segresnet
26+
```
27+
28+
## Validation performance: NVIDIA DGX-1 (8x V100 16G)
29+
30+
The validation results can be obtained by running the training script with MONAI 1.3.0 on NVIDIA DGX-1 with (8x V100 32GB) GPUs. The results below are in terms of average dice.
31+
32+
33+
| | Fold 0 | Fold 1 | Fold 2 | Fold 3 | Fold 4 | Avg |
34+
|:------:|:------:|:------:|:------:|:------:|:------:|:---:|
35+
| SegResNet | 0.8997 | 0.8739 | 0.8923 |0.8911 | 0.8892 |0.88924 |
36+
37+
38+
## Data
39+
40+
The BRATS23 challenge dataset [2,3] can be downloaded from [here](https://www.synapse.org/brats). Each user is responsible for checking the content of the datasets and the applicable licenses and determining if suitable for the intended use. The license for the KiTS23 dataset is different than the MONAI license.
41+
42+
43+
## References
44+
[1] Andriy Myronenko, Dong Yang, Yufan He and Daguang Xu: "Auto3DSeg for Brain Turmor Segmentation from 3D MRI in BraTS 2023 Challenge". In MICCAI (2023). https://arxiv.org/
45+
46+
47+
[2] Baid, U., Ghodasara, S., Bilello, M., Mohan, S., Calabrese, E., Colak, E., Farahani, K., Kalpathy-Cramer, J., Kitamura, F.C., Pati, S., Prevedello, L.M., Rudie, J.D., Sako, C., Shinohara, R.T., Bergquist, T., Chai, R., Eddy, J., Elliott, J., Reade, W., Schaffter, T., Yu, T., Zheng, J., Annotators, B., Davatzikos, C., Mongan, J.,
48+
Hess, C., Cha, S., Villanueva-Meyer, J.E., Freymann, J.B., Kirby, J.S., Wiestler, B., Crivellaro, P., Colen, R.R., Kotrotsou, A., Marcus, D.S., Milchenko, M., Naz-eri, A., Fathallah-Shaykh, H.M., Wiest, R., Jakab, A., Weber, M., Mahajan, A., Menze, B.H., Flanders, A.E., Bakas, S.: The RSNA-ASNR-MICCAI brats 2021 benchmark on brain tumor segmentation and radiogenomic classification. CoRR abs/2107.02314 (2021), https://arxiv.org/abs/2107.02314
49+
50+
38.5 KB
Loading

0 commit comments

Comments
 (0)