Skip to content

Breast Density FL challenge: add challenge evaluation script #765

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 29, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions federated_learning/breast_density_challenge/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -174,3 +174,6 @@ for the global model (should be named `SRV_best_FL_global_model.pt`).
...
}
```

## Challenge evaluation
The script used for evaluating different submissions is available at [challenge_evaluate.py](./challenge_evaluate.py)
251 changes: 251 additions & 0 deletions federated_learning/breast_density_challenge/challenge_evaluate.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,251 @@
# Copyright 2022 MONAI Consortium
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# http://www.apache.org/licenses/LICENSE-2.0
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import json

import numpy as np
import pandas as pd
from sklearn import metrics as sk_metrics

site_names = ["site-1", "site-2", "site-3"]
merge_patients = True


def read_ground_truth(filename):
with open(filename, "r") as f:
data = json.load(f)

df = {"patient_id": [], "image": [], "label": [], "split": []}
for split in data.keys():
print(f"loading {split}: {len(data[split])} cases from {filename}")
for item in data[split]:
[df[k].append(item[k]) for k in item.keys()]
df["split"].append(split)
if "label" not in item.keys():
df["label"].append(np.NAN)

return pd.DataFrame(df)


def read_prediction(filename, gt, model_name):
with open(filename, "r") as f:
data = json.load(f)

result = {}
for s in site_names:
result[s] = {
"pred_probs": [],
"gt_labels": [],
"pred_probs_bin": [],
"gt_labels_bin": [],
"patient_ids": [],
}
for site in data.keys():
for item in data[site][model_name]["test_probs"]:
# multi-class
assert (
len(item["probs"]) == 4
), f"Expected four probs but got {len(item['probs'])}: {item['probs']}"
result[site]["pred_probs"].append(item["probs"])
gt_item = gt[gt["image"] == item["image"]]
gt_label = gt_item["label"]
assert len(gt_label) == 1, f"gt label was {gt_label}"
result[site]["patient_ids"].append(gt_item["patient_id"].item())
result[site]["gt_labels"].append(gt_label.item())

# binary (non-dense vs dense)
result[site]["pred_probs_bin"].append(
np.sum(item["probs"][2::])
) # prob for dense (class 3 and 4).
if gt_label.item() in [0, 1]: # non-dense (class 1 and 2)
result[site]["gt_labels_bin"].append(0)
elif gt_label.item() in [2, 3]: # dense (class 3 and 4)
result[site]["gt_labels_bin"].append(1)
else:
raise ValueError(f"didn't expect a label of {gt_label}")
assert (
len(result[site]["gt_labels"])
== len(result[site]["pred_probs"])
== len(result[site]["gt_labels_bin"])
== len(result[site]["pred_probs_bin"])
== len(result[site]["patient_ids"])
)
assert len(np.unique(result[site]["gt_labels_bin"])) == 2, (
f"Expected two kinds of binary labels but got "
f"unique labels {np.unique(result[site]['gt_labels_bin'])}"
)
return result


def evaluate(site_result):
gt_labels = site_result["gt_labels"]
pred_probs = site_result["pred_probs"]
gt_labels_bin = site_result["gt_labels_bin"]
pred_probs_bin = site_result["pred_probs_bin"]

# get pred labels
pred_labels = []
for prob in pred_probs:
pred_labels.append(np.argmax(prob))

assert (
len(gt_labels) == len(pred_labels) == len(gt_labels_bin) == len(pred_probs_bin)
)

# multi-class metrics
linear_kappa = sk_metrics.cohen_kappa_score(
gt_labels, pred_labels, weights="linear"
)
quadratic_kappa = sk_metrics.cohen_kappa_score(
gt_labels, pred_labels, weights="quadratic"
)

# per-image distance metrics
dist = np.abs(np.squeeze(gt_labels) - np.squeeze(pred_labels))
lin_dist = -dist
quad_dist = -(dist ** 2)
avg_lin_dist = np.mean(lin_dist)
avg_quad_dist = np.mean(quad_dist)

# binary metrics
fpr, tpr, thresholds = sk_metrics.roc_curve(
gt_labels_bin, pred_probs_bin, pos_label=1
)
auc = sk_metrics.auc(fpr, tpr)

metrics = {
"linear_kappa": linear_kappa,
"quadratic_kappa": quadratic_kappa,
"auc": auc,
"lin_dist": lin_dist,
"quad_dist": quad_dist,
"avg_lin_dist": avg_lin_dist,
"avg_quad_dist": avg_quad_dist,
}
print(
f"evaluating {len(gt_labels)} predictions: "
f"lin. kappa {linear_kappa:.3f}, "
f"quad. kappa {quadratic_kappa:.3f}, "
f"auc. {auc:.3f}, "
f"avg. lin. dist {avg_lin_dist:.3f}, "
f"avg. quad. dist {avg_quad_dist:.3f}, "
)

return metrics


def merge_patients(site_result):
merged_results = {}
for k in site_result.keys():
merged_results[k] = []
site_result[k] = np.array(site_result[k]) # needed for merging
merged_results["counts"] = []

patient_ids = site_result["patient_ids"]
unique_patients = np.unique(patient_ids)
print(
f"Merging {len(patient_ids)} predictions from {len(unique_patients)} patients."
)

for patient in unique_patients:
idx = np.where(patient_ids == patient)
assert np.size(idx) > 0, "no matching patient found!"
merged_results["patient_ids"].append(patient)
merged_results["counts"].append(np.size(idx))
# merge labels
merged_results["gt_labels"].append(np.unique(site_result["gt_labels"][idx]))
merged_results["gt_labels_bin"].append(
np.unique(site_result["gt_labels_bin"][idx])
)
# merged labels should be all the same
assert len(merged_results["gt_labels"][-1]) == 1
assert len(merged_results["gt_labels_bin"][-1]) == 1
# average probs
merged_results["pred_probs"].append(
np.mean(site_result["pred_probs"][idx], axis=0)
)
merged_results["pred_probs_bin"].append(
np.mean(site_result["pred_probs_bin"][idx])
)
assert len(merged_results["pred_probs"][-1]) == 4 # should be still four probs
assert isinstance(
merged_results["pred_probs_bin"][-1], float
) # should be just one prob
print(
f"Found patients with these nr of exams: {np.unique(merged_results['counts'])}"
)

return merged_results


def compute_metrics(args):
gt1 = read_ground_truth(args.gt1)
gt2 = read_ground_truth(args.gt2)
gt3 = read_ground_truth(args.gt3)
ground_truth = pd.concat((gt1, gt2, gt3))
pred_result = read_prediction(
args.pred,
gt=ground_truth[ground_truth["split"] == args.test_name],
model_name=args.model_name,
) # read predictions and merge with ground truth

print(f"Evaluating {args.model_name} on {args.test_name}:")
overall_pred_result = {}

metrics = {}
for s in site_names:
if merge_patients:
pred_result[s] = merge_patients(pred_result[s])

print(f"==={s}===")
if not overall_pred_result:
overall_pred_result = pred_result[s]
else:
[
overall_pred_result[k].extend(pred_result[s][k])
for k in overall_pred_result.keys()
]
metrics[s] = evaluate(pred_result[s])
print("===overall===")
metrics["overall"] = evaluate(overall_pred_result)

return metrics


def main():
parser = argparse.ArgumentParser()
parser.add_argument(
"--gt1", type=str, default="../../../dmist_files/dataset_site-1.json"
)
parser.add_argument(
"--gt2", type=str, default="../../../dmist_files/dataset_site-2.json"
)
parser.add_argument(
"--gt3", type=str, default="../../../dmist_files/dataset_site-3.json"
)
parser.add_argument(
"--pred",
type=str,
default="../../../results_acr_5-11-2022/result_server/predictions.json",
)
parser.add_argument("--test_name", type=str, default="test1")
parser.add_argument("--model_name", type=str, default="SRV_best_FL_global_model.pt")
args = parser.parse_args()

metrics = compute_metrics(args)

# print(f"Evaluation metrics for {args.model_name} on {args.test_name}:")
# print(metrics)


if __name__ == "__main__":
main()