Skip to content

748 replace AsChannelFirst as EnsureChannelFirst #812

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions 2d_classification/mednist_tutorial.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,7 @@
"from monai.networks.nets import DenseNet121\n",
"from monai.transforms import (\n",
" Activations,\n",
" AddChannel,\n",
" EnsureChannelFirst,\n",
" AsDiscrete,\n",
" Compose,\n",
" LoadImage,\n",
Expand Down Expand Up @@ -361,7 +361,7 @@
"train_transforms = Compose(\n",
" [\n",
" LoadImage(image_only=True),\n",
" AddChannel(),\n",
" EnsureChannelFirst(),\n",
" ScaleIntensity(),\n",
" RandRotate(range_x=np.pi / 12, prob=0.5, keep_size=True),\n",
" RandFlip(spatial_axis=0, prob=0.5),\n",
Expand All @@ -370,7 +370,7 @@
")\n",
"\n",
"val_transforms = Compose(\n",
" [LoadImage(image_only=True), AddChannel(), ScaleIntensity()])\n",
" [LoadImage(image_only=True), EnsureChannelFirst(), ScaleIntensity()])\n",
"\n",
"y_pred_trans = Compose([Activations(softmax=True)])\n",
"y_trans = Compose([AsDiscrete(to_onehot=num_class)])"
Expand Down Expand Up @@ -1340,7 +1340,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.12"
"version": "3.8.13"
}
},
"nbformat": 4,
Expand Down
6 changes: 3 additions & 3 deletions 2d_segmentation/torch/unet_evaluation_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.networks.nets import UNet
from monai.transforms import Activations, AddChannel, AsDiscrete, Compose, LoadImage, SaveImage, ScaleIntensity
from monai.transforms import Activations, AsDiscrete, Compose, LoadImage, SaveImage, ScaleIntensity


def main(tempdir):
Expand All @@ -40,8 +40,8 @@ def main(tempdir):
segs = sorted(glob(os.path.join(tempdir, "seg*.png")))

# define transforms for image and segmentation
imtrans = Compose([LoadImage(image_only=True), AddChannel(), ScaleIntensity()])
segtrans = Compose([LoadImage(image_only=True), AddChannel(), ScaleIntensity()])
imtrans = Compose([LoadImage(image_only=True, ensure_channel_first=True), ScaleIntensity()])
segtrans = Compose([LoadImage(image_only=True, ensure_channel_first=True), ScaleIntensity()])
val_ds = ArrayDataset(images, imtrans, segs, segtrans)
# sliding window inference for one image at every iteration
val_loader = DataLoader(val_ds, batch_size=1, num_workers=1, pin_memory=torch.cuda.is_available())
Expand Down
4 changes: 2 additions & 2 deletions 2d_segmentation/torch/unet_evaluation_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,7 +23,7 @@
from monai.inferers import sliding_window_inference
from monai.metrics import DiceMetric
from monai.networks.nets import UNet
from monai.transforms import Activations, AddChanneld, AsDiscrete, Compose, LoadImaged, SaveImage, ScaleIntensityd
from monai.transforms import Activations, EnsureChannelFirstd, AsDiscrete, Compose, LoadImaged, SaveImage, ScaleIntensityd


def main(tempdir):
Expand All @@ -44,7 +44,7 @@ def main(tempdir):
val_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
AddChanneld(keys=["img", "seg"]),
EnsureChannelFirstd(keys=["img", "seg"]),
ScaleIntensityd(keys=["img", "seg"]),
]
)
Expand Down
11 changes: 4 additions & 7 deletions 2d_segmentation/torch/unet_training_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,6 @@
from monai.metrics import DiceMetric
from monai.transforms import (
Activations,
AddChannel,
AsDiscrete,
Compose,
LoadImage,
Expand Down Expand Up @@ -53,24 +52,22 @@ def main(tempdir):
# define transforms for image and segmentation
train_imtrans = Compose(
[
LoadImage(image_only=True),
AddChannel(),
LoadImage(image_only=True, ensure_channel_first=True),
ScaleIntensity(),
RandSpatialCrop((96, 96), random_size=False),
RandRotate90(prob=0.5, spatial_axes=(0, 1)),
]
)
train_segtrans = Compose(
[
LoadImage(image_only=True),
AddChannel(),
LoadImage(image_only=True, ensure_channel_first=True),
ScaleIntensity(),
RandSpatialCrop((96, 96), random_size=False),
RandRotate90(prob=0.5, spatial_axes=(0, 1)),
]
)
val_imtrans = Compose([LoadImage(image_only=True), AddChannel(), ScaleIntensity()])
val_segtrans = Compose([LoadImage(image_only=True), AddChannel(), ScaleIntensity()])
val_imtrans = Compose([LoadImage(image_only=True, ensure_channel_first=True), ScaleIntensity()])
val_segtrans = Compose([LoadImage(image_only=True, ensure_channel_first=True), ScaleIntensity()])

# define array dataset, data loader
check_ds = ArrayDataset(images, train_imtrans, segs, train_segtrans)
Expand Down
6 changes: 3 additions & 3 deletions 2d_segmentation/torch/unet_training_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@
from monai.metrics import DiceMetric
from monai.transforms import (
Activations,
AddChanneld,
EnsureChannelFirstd,
AsDiscrete,
Compose,
LoadImaged,
Expand Down Expand Up @@ -56,7 +56,7 @@ def main(tempdir):
train_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
AddChanneld(keys=["img", "seg"]),
EnsureChannelFirstd(keys=["img", "seg"]),
ScaleIntensityd(keys=["img", "seg"]),
RandCropByPosNegLabeld(
keys=["img", "seg"], label_key="seg", spatial_size=[96, 96], pos=1, neg=1, num_samples=4
Expand All @@ -67,7 +67,7 @@ def main(tempdir):
val_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
AddChanneld(keys=["img", "seg"]),
EnsureChannelFirstd(keys=["img", "seg"]),
ScaleIntensityd(keys=["img", "seg"]),
]
)
Expand Down
6 changes: 3 additions & 3 deletions 3d_classification/densenet_training_array.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -102,7 +102,7 @@
"from monai.config import print_config\n",
"from monai.data import DataLoader, ImageDataset\n",
"from monai.transforms import (\n",
" AddChannel,\n",
" EnsureChannelFirst,\n",
" Compose,\n",
" RandRotate90,\n",
" Resize,\n",
Expand Down Expand Up @@ -224,9 +224,9 @@
],
"source": [
"# Define transforms\n",
"train_transforms = Compose([ScaleIntensity(), AddChannel(), Resize((96, 96, 96)), RandRotate90()])\n",
"train_transforms = Compose([ScaleIntensity(), EnsureChannelFirst(), Resize((96, 96, 96)), RandRotate90()])\n",
"\n",
"val_transforms = Compose([ScaleIntensity(), AddChannel(), Resize((96, 96, 96))])\n",
"val_transforms = Compose([ScaleIntensity(), EnsureChannelFirst(), Resize((96, 96, 96))])\n",
"\n",
"# Define nifti dataset, data loader\n",
"check_ds = ImageDataset(image_files=images, labels=labels, transform=train_transforms)\n",
Expand Down
4 changes: 2 additions & 2 deletions 3d_classification/torch/densenet_evaluation_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@

import monai
from monai.data import CSVSaver, ImageDataset, DataLoader
from monai.transforms import AddChannel, Compose, Resize, ScaleIntensity
from monai.transforms import EnsureChannelFirst, Compose, Resize, ScaleIntensity


def main():
Expand Down Expand Up @@ -46,7 +46,7 @@ def main():
labels = np.array([0, 0, 1, 0, 1, 0, 1, 0, 1, 0], dtype=np.int64)

# Define transforms for image
val_transforms = Compose([ScaleIntensity(), AddChannel(), Resize((96, 96, 96))])
val_transforms = Compose([ScaleIntensity(), EnsureChannelFirst(), Resize((96, 96, 96))])

# Define image dataset
val_ds = ImageDataset(image_files=images, labels=labels, transform=val_transforms, image_only=True)
Expand Down
5 changes: 2 additions & 3 deletions 3d_classification/torch/densenet_evaluation_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@

import monai
from monai.data import CSVSaver, DataLoader
from monai.transforms import AddChanneld, Compose, LoadImaged, Resized, ScaleIntensityd
from monai.transforms import Compose, LoadImaged, Resized, ScaleIntensityd


def main():
Expand Down Expand Up @@ -49,8 +49,7 @@ def main():
# Define transforms for image
val_transforms = Compose(
[
LoadImaged(keys=["img"]),
AddChanneld(keys=["img"]),
LoadImaged(keys=["img"], ensure_channel_first=True),
ScaleIntensityd(keys=["img"]),
Resized(keys=["img"], spatial_size=(96, 96, 96)),
]
Expand Down
6 changes: 3 additions & 3 deletions 3d_classification/torch/densenet_training_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@

import monai
from monai.data import ImageDataset, DataLoader
from monai.transforms import AddChannel, Compose, RandRotate90, Resize, ScaleIntensity
from monai.transforms import EnsureChannelFirst, Compose, RandRotate90, Resize, ScaleIntensity


def main():
Expand Down Expand Up @@ -57,8 +57,8 @@ def main():
labels = np.array([0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0], dtype=np.int64)

# Define transforms
train_transforms = Compose([ScaleIntensity(), AddChannel(), Resize((96, 96, 96)), RandRotate90()])
val_transforms = Compose([ScaleIntensity(), AddChannel(), Resize((96, 96, 96))])
train_transforms = Compose([ScaleIntensity(), EnsureChannelFirst(), Resize((96, 96, 96)), RandRotate90()])
val_transforms = Compose([ScaleIntensity(), EnsureChannelFirst(), Resize((96, 96, 96))])

# Define image dataset, data loader
check_ds = ImageDataset(image_files=images, labels=labels, transform=train_transforms)
Expand Down
8 changes: 3 additions & 5 deletions 3d_classification/torch/densenet_training_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
import monai
from monai.data import decollate_batch, DataLoader
from monai.metrics import ROCAUCMetric
from monai.transforms import Activations, AddChanneld, AsDiscrete, Compose, LoadImaged, RandRotate90d, Resized, ScaleIntensityd
from monai.transforms import Activations, AsDiscrete, Compose, LoadImaged, RandRotate90d, Resized, ScaleIntensityd


def main():
Expand Down Expand Up @@ -62,17 +62,15 @@ def main():
# Define transforms for image
train_transforms = Compose(
[
LoadImaged(keys=["img"]),
AddChanneld(keys=["img"]),
LoadImaged(keys=["img"], ensure_channel_first=True),
ScaleIntensityd(keys=["img"]),
Resized(keys=["img"], spatial_size=(96, 96, 96)),
RandRotate90d(keys=["img"], prob=0.8, spatial_axes=[0, 2]),
]
)
val_transforms = Compose(
[
LoadImaged(keys=["img"]),
AddChanneld(keys=["img"]),
LoadImaged(keys=["img"], ensure_channel_first=True),
ScaleIntensityd(keys=["img"]),
Resized(keys=["img"], spatial_size=(96, 96, 96)),
]
Expand Down
4 changes: 1 addition & 3 deletions 3d_segmentation/challenge_baseline/run_net.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,6 @@
import monai
from monai.handlers import CheckpointSaver, MeanDice, StatsHandler, ValidationHandler, from_engine
from monai.transforms import (
AddChanneld,
AsDiscreted,
CastToTyped,
LoadImaged,
Expand All @@ -43,8 +42,7 @@ def get_xforms(mode="train", keys=("image", "label")):
"""returns a composed transform for train/val/infer."""

xforms = [
LoadImaged(keys),
AddChanneld(keys),
LoadImaged(keys, ensure_channel_first=True),
Orientationd(keys, axcodes="LPS"),
Spacingd(keys, pixdim=(1.25, 1.25, 5.0), mode=("bilinear", "nearest")[: len(keys)]),
ScaleIntensityRanged(keys[0], a_min=-1000.0, a_max=500.0, b_min=0.0, b_max=1.0, clip=True),
Expand Down
6 changes: 3 additions & 3 deletions 3d_segmentation/ignite/unet_evaluation_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,7 +25,7 @@
from monai.handlers import CheckpointLoader, MeanDice, StatsHandler
from monai.inferers import sliding_window_inference
from monai.networks.nets import UNet
from monai.transforms import Activations, AddChannel, AsDiscrete, Compose, SaveImage, ScaleIntensity
from monai.transforms import Activations, EnsureChannelFirst, AsDiscrete, Compose, SaveImage, ScaleIntensity


def main(tempdir):
Expand All @@ -46,8 +46,8 @@ def main(tempdir):
segs = sorted(glob(os.path.join(tempdir, "seg*.nii.gz")))

# define transforms for image and segmentation
imtrans = Compose([ScaleIntensity(), AddChannel()])
segtrans = Compose([AddChannel()])
imtrans = Compose([ScaleIntensity(), EnsureChannelFirst()])
segtrans = Compose([EnsureChannelFirst()])
ds = ImageDataset(images, segs, transform=imtrans, seg_transform=segtrans, image_only=False)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
Expand Down
4 changes: 2 additions & 2 deletions 3d_segmentation/ignite/unet_evaluation_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,7 +26,7 @@
from monai.handlers import CheckpointLoader, MeanDice, StatsHandler
from monai.inferers import sliding_window_inference
from monai.networks.nets import UNet
from monai.transforms import Activations, AsChannelFirstd, AsDiscrete, Compose, LoadImaged, SaveImage, ScaleIntensityd
from monai.transforms import Activations, EnsureChannelFirstd, AsDiscrete, Compose, LoadImaged, SaveImage, ScaleIntensityd


def main(tempdir):
Expand All @@ -51,7 +51,7 @@ def main(tempdir):
val_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
EnsureChannelFirstd(keys=["img", "seg"]),
ScaleIntensityd(keys="img"),
]
)
Expand Down
10 changes: 5 additions & 5 deletions 3d_segmentation/ignite/unet_training_array.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,7 +32,7 @@
)
from monai.transforms import (
Activations,
AddChannel,
EnsureChannelFirst,
AsDiscrete,
Compose,
RandSpatialCrop,
Expand Down Expand Up @@ -63,17 +63,17 @@ def main(tempdir):
train_imtrans = Compose(
[
ScaleIntensity(),
AddChannel(),
EnsureChannelFirst(),
RandSpatialCrop((96, 96, 96), random_size=False),
]
)
train_segtrans = Compose(
[AddChannel(), RandSpatialCrop((96, 96, 96), random_size=False)]
[EnsureChannelFirst(), RandSpatialCrop((96, 96, 96), random_size=False)]
)
val_imtrans = Compose(
[ScaleIntensity(), AddChannel(), Resize((96, 96, 96))]
[ScaleIntensity(), EnsureChannelFirst(), Resize((96, 96, 96))]
)
val_segtrans = Compose([AddChannel(), Resize((96, 96, 96))])
val_segtrans = Compose([EnsureChannelFirst(), Resize((96, 96, 96))])

# define image dataset, data loader
check_ds = ImageDataset(
Expand Down
6 changes: 3 additions & 3 deletions 3d_segmentation/ignite/unet_training_dict.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@
)
from monai.transforms import (
Activations,
AsChannelFirstd,
EnsureChannelFirstd,
AsDiscrete,
Compose,
LoadImaged,
Expand Down Expand Up @@ -72,7 +72,7 @@ def main(tempdir):
train_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
EnsureChannelFirstd(keys=["img", "seg"]),
ScaleIntensityd(keys="img"),
RandCropByPosNegLabeld(
keys=["img", "seg"],
Expand All @@ -88,7 +88,7 @@ def main(tempdir):
val_transforms = Compose(
[
LoadImaged(keys=["img", "seg"]),
AsChannelFirstd(keys=["img", "seg"], channel_dim=-1),
EnsureChannelFirstd(keys=["img", "seg"]),
ScaleIntensityd(keys="img"),
]
)
Expand Down
Loading