Skip to content

819 Update RANZCR and DynUNet examples #826

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jul 25, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -1,9 +1,7 @@
import numpy as np
from monai.transforms import (
CastToTyped,
CenterSpatialCropd,
Compose,
EnsureTyped,
Lambdad,
NormalizeIntensityd,
RandAffined,
Expand Down Expand Up @@ -60,10 +58,8 @@
max_spatial_size=(84, 84),
prob=0.5,
),
CastToTyped(keys="input", dtype=np.float32),
NormalizeIntensityd(keys="input", nonzero=False),
Lambdad(keys="input", func=lambda x: x.clip(-20, 20)),
EnsureTyped(keys=("input", "mask")),
]
)

Expand All @@ -80,10 +76,8 @@
CenterSpatialCropd(
keys=("input", "mask"), roi_size=(cfg.img_size[0], cfg.img_size[1])
),
CastToTyped(keys="input", dtype=np.float32),
NormalizeIntensityd(keys="input", nonzero=False),
Lambdad(keys="input", func=lambda x: x.clip(-20, 20)),
EnsureTyped(keys=("input", "mask")),
]
)

Expand All @@ -97,9 +91,7 @@
align_corners=False,
),
SpatialPadd(keys=("input", "mask"), spatial_size=(1008, 1008)),
CastToTyped(keys="input", dtype=np.float32),
NormalizeIntensityd(keys="input", nonzero=False),
Lambdad(keys="input", func=lambda x: x.clip(-20, 20)),
EnsureTyped(keys=("input", "mask")),
]
)
Original file line number Diff line number Diff line change
@@ -1,9 +1,7 @@
import numpy as np
from monai.transforms import (
CastToTyped,
CenterSpatialCropd,
Compose,
EnsureTyped,
Lambdad,
NormalizeIntensityd,
RandAffined,
Expand Down Expand Up @@ -62,10 +60,8 @@
max_spatial_size=(102, 102),
prob=0.5,
),
CastToTyped(keys="input", dtype=np.float32),
NormalizeIntensityd(keys="input", nonzero=False),
Lambdad(keys="input", func=lambda x: x.clip(-20, 20)),
EnsureTyped(keys=("input", "mask")),
]
)

Expand All @@ -82,10 +78,8 @@
CenterSpatialCropd(
keys=("input", "mask"), roi_size=(cfg.img_size[0], cfg.img_size[1])
),
CastToTyped(keys="input", dtype=np.float32),
NormalizeIntensityd(keys="input", nonzero=False),
Lambdad(keys="input", func=lambda x: x.clip(-20, 20)),
EnsureTyped(keys=("input", "mask")),
]
)

Expand All @@ -99,9 +93,7 @@
align_corners=False,
),
SpatialPadd(keys=("input", "mask"), spatial_size=(1120, 1120)),
CastToTyped(keys="input", dtype=np.float32),
NormalizeIntensityd(keys="input", nonzero=False),
Lambdad(keys="input", func=lambda x: x.clip(-20, 20)),
EnsureTyped(keys=("input", "mask")),
]
)
Original file line number Diff line number Diff line change
@@ -1,9 +1,7 @@
import numpy as np
from monai.transforms import (
CastToTyped,
CenterSpatialCropd,
Compose,
EnsureTyped,
Lambdad,
NormalizeIntensityd,
RandAffined,
Expand Down Expand Up @@ -63,10 +61,8 @@
max_spatial_size=(102, 102),
prob=0.5,
),
CastToTyped(keys="input", dtype=np.float32),
NormalizeIntensityd(keys="input", nonzero=False),
Lambdad(keys="input", func=lambda x: x.clip(-20, 20)),
EnsureTyped(keys=("input", "mask")),
]
)

Expand All @@ -83,10 +79,8 @@
CenterSpatialCropd(
keys=("input", "mask"), roi_size=(cfg.img_size[0], cfg.img_size[1])
),
CastToTyped(keys="input", dtype=np.float32),
NormalizeIntensityd(keys="input", nonzero=False),
Lambdad(keys="input", func=lambda x: x.clip(-20, 20)),
EnsureTyped(keys=("input", "mask")),
]
)

Expand All @@ -100,9 +94,7 @@
align_corners=False,
),
SpatialPadd(keys=("input", "mask"), spatial_size=(1120, 1120)),
CastToTyped(keys="input", dtype=np.float32),
NormalizeIntensityd(keys="input", nonzero=False),
Lambdad(keys="input", func=lambda x: x.clip(-20, 20)),
EnsureTyped(keys=("input", "mask")),
]
)
4 changes: 2 additions & 2 deletions kaggle/RANZCR/4th_place_solution/data/seg_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ def load_one(self, study_id: str):
"""
ext = self.cfg.image_extension
fp = self.data_folder + study_id + ext
img = self.img_reader(filename=fp).transpose(1, 0)
img = self.img_reader(filename=fp).numpy().transpose(1, 0)
img = img[:, :, None]

return img
Expand Down Expand Up @@ -129,7 +129,7 @@ def __getitem__(self, idx):
img = self.load_one(study_id)
# convert the shape into (Channel, height, width)
mask = self.get_mask(study_id, img.shape, is_annotated).transpose(2, 0, 1)
data = {"input": img.transpose(2, 0, 1), "mask": mask}
data = {"input": torch.tensor(img.transpose(2, 0, 1)), "mask": torch.tensor(mask)}
if self.aug:
data = self.aug(data)

Expand Down
2 changes: 0 additions & 2 deletions kaggle/RANZCR/4th_place_solution/train.py
Original file line number Diff line number Diff line change
Expand Up @@ -224,8 +224,6 @@ def run_eval(model, val_dataloader, cfg, writer, epoch):

val_preds = torch.cat(val_preds)
val_targets = torch.cat(val_targets)
val_preds = val_preds.cpu().numpy().astype(np.float32)
val_targets = val_targets.cpu().numpy().astype(np.float32)
avg_auc = compute_roc_auc(val_preds, val_targets, average="macro")
writer.add_scalar("val_avg_auc", avg_auc, epoch)

Expand Down
24 changes: 8 additions & 16 deletions modules/dynunet_pipeline/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,7 @@
NormalizeIntensity, RandCropByPosNegLabeld,
RandFlipd, RandGaussianNoised,
RandGaussianSmoothd, RandScaleIntensityd,
RandZoomd, SpatialCrop, SpatialPadd, EnsureTyped)
RandZoomd, SpatialCrop, SpatialPadd, ToTensord, EnsureTyped)
from monai.transforms.compose import MapTransform
from monai.transforms.utils import generate_spatial_bounding_box
from skimage.transform import resize
Expand All @@ -31,6 +31,7 @@ def get_task_transforms(mode, task_id, pos_sample_num, neg_sample_num, num_sampl
normalize_values=normalize_values[task_id],
model_mode=mode,
),
ToTensord(keys="image"),
]
# 3. spatial transforms
if mode == "train":
Expand Down Expand Up @@ -66,23 +67,11 @@ def get_task_transforms(mode, task_id, pos_sample_num, neg_sample_num, num_sampl
RandFlipd(["image", "label"], spatial_axis=[0], prob=0.5),
RandFlipd(["image", "label"], spatial_axis=[1], prob=0.5),
RandFlipd(["image", "label"], spatial_axis=[2], prob=0.5),
CastToTyped(keys=["image", "label"], dtype=(np.float32, np.uint8)),
EnsureTyped(keys=["image", "label"]),
]
elif mode == "validation":
other_transforms = [
CastToTyped(keys=["image", "label"], dtype=(np.float32, np.uint8)),
EnsureTyped(keys=["image", "label"]),
]
else:
other_transforms = [
CastToTyped(keys=["image"], dtype=(np.float32)),
EnsureTyped(keys=["image"]),
]

all_transforms = load_transforms + sample_transforms + other_transforms
return Compose(all_transforms)

return Compose(load_transforms + sample_transforms + other_transforms)
else:
return Compose(load_transforms + sample_transforms)

def resample_image(image, shape, anisotrophy_flag):
resized_channels = []
Expand Down Expand Up @@ -273,6 +262,7 @@ def __call__(self, data):
# load data
d = dict(data)
image = d["image"]

image_spacings = d["image_meta_dict"]["pixdim"][1:4].tolist()

if "label" in self.keys:
Expand All @@ -294,6 +284,8 @@ def __call__(self, data):
# calculate shape
resample_flag = False
anisotrophy_flag = False

image = image.numpy()
if self.target_spacing != image_spacings:
# resample
resample_flag = True
Expand Down