Skip to content

Accessors for differential and algebraic erquations #2601

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
Apr 2, 2024
Merged
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions src/ModelingToolkit.jl
Original file line number Diff line number Diff line change
Expand Up @@ -258,6 +258,9 @@ export build_function
export modelingtoolkitize
export generate_initializesystem

export alg_equations, diff_equations, has_alg_equations, has_diff_equations
export get_alg_eqs, get_diff_eqs, has_alg_eqs, has_diff_eqs

export @variables, @parameters, @constants, @brownian
export @named, @nonamespace, @namespace, extend, compose, complete
export debug_system
Expand Down
235 changes: 235 additions & 0 deletions src/systems/abstractsystem.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2384,3 +2384,238 @@ function dump_unknowns(sys::AbstractSystem)
meta
end
end

### Functions for accessing algebraic/differential equations in systems ###

"""
is_diff_equation(eq)

Returns `true` if the input is a differential equation, i.e. is an equatation that contain some
form of differential.

Example:
```julia
using ModelingToolkit
using ModelingToolkit: t_nounits as t, D_nounits as D
@parameters p d
@variables X(t)
eq1 = D(X) ~ p - d*X
eq2 = 0 ~ p - d*X

is_diff_equation(eq1) # true
is_diff_equation(eq2) # false
```
"""
function is_diff_equation(eq)
(eq isa Equation) || (return false)
isdefined(eq, :lhs) && occursin(is_derivative, wrap(eq.lhs)) && (return true)
isdefined(eq, :rhs) && occursin(is_derivative, wrap(eq.rhs)) && (return true)
return false
end

"""
is_alg_equation(eq)

Returns `true` if the input is an algebraic equation, i.e. is an equatation that does not contain
any differentials.

Example:
```julia
using ModelingToolkit
using ModelingToolkit: t_nounits as t, D_nounits as D
@parameters p d
@variables X(t)
eq1 = D(X) ~ p - d*X
eq2 = 0 ~ p - d*X

is_alg_equation(eq1) # false
is_alg_equation(eq2) # true
```
"""
function is_alg_equation(eq)
return (eq isa Equation) && !is_diff_equation(eq)
end

"""
alg_equations(sys::AbstractSystem)

For a system, returns a vector of all its algebraic equations (i.e. that does not contain any
differentials).

Example:
```julia
using ModelingToolkit
using ModelingToolkit: t_nounits as t, D_nounits as D
@parameters p d
@variables X(t)
eq1 = D(X) ~ p - d*X
eq2 = 0 ~ p - d*X
@named osys = ODESystem([eq1, eq2], t)

alg_equations(osys) # returns `[0 ~ p - d*X(t)]`.
"""
alg_equations(sys::AbstractSystem) = filter(is_alg_equation, equations(sys))

"""
diff_equations(sys::AbstractSystem)

For a system, returns a vector of all its differential equations (i.e. that does contain a differential).

Example:
```julia
using ModelingToolkit
using ModelingToolkit: t_nounits as t, D_nounits as D
@parameters p d
@variables X(t)
eq1 = D(X) ~ p - d*X
eq2 = 0 ~ p - d*X
@named osys = ODESystem([eq1, eq2], t)

diff_equations(osys) # returns `[Differential(t)(X(t)) ~ p - d*X(t)]`.
"""
diff_equations(sys::AbstractSystem) = filter(is_diff_equation, equations(sys))

"""
has_alg_equations(sys::AbstractSystem)

For a system, returns true if it contain at least one algebraic equation (i.e. that does not contain any
differentials).

Example:
```julia
using ModelingToolkit
using ModelingToolkit: t_nounits as t, D_nounits as D
@parameters p d
@variables X(t)
eq1 = D(X) ~ p - d*X
eq2 = 0 ~ p - d*X
@named osys1 = ODESystem([eq1], t)
@named osys2 = ODESystem([eq2], t)

has_alg_equations(osys1) # returns `false`.
has_alg_equations(osys2) # returns `true`.
```
"""
has_alg_equations(sys::AbstractSystem) = any(is_alg_equation, equations(sys))

"""
has_diff_equations(sys::AbstractSystem)

For a system, returns true if it contain at least one differential equation (i.e. that contain a differential).

Example:
```julia
using ModelingToolkit
using ModelingToolkit: t_nounits as t, D_nounits as D
@parameters p d
@variables X(t)
eq1 = D(X) ~ p - d*X
eq2 = 0 ~ p - d*X
@named osys1 = ODESystem([eq1], t)
@named osys2 = ODESystem([eq2], t)

has_diff_equations(osys1) # returns `true`.
has_diff_equations(osys2) # returns `false`.
```
"""
has_diff_equations(sys::AbstractSystem) = any(is_diff_equation, equations(sys))

"""
get_alg_eqs(sys::AbstractSystem)

For a system, returns a vector of all algebraic equations (i.e. that does not contain any
differentials) in its *top-level system*.

Example:
```julia
using ModelingToolkit
using ModelingToolkit: t_nounits as t, D_nounits as D
@parameters p d
@variables X(t)
eq1 = D(X) ~ p - d*X
eq2 = 0 ~ p - d*X
@named osys1 = ODESystem([eq1], t)
@named osys2 = ODESystem([eq2], t)
osys12 = compose(osys1, [osys2])
osys21 = compose(osys2, [osys1])

get_alg_eqs(osys12) # returns `Equation[]`.
get_alg_eqs(osys21) # returns `[0 ~ p - d*X(t)]`.
```
"""
get_alg_eqs(sys::AbstractSystem) = filter(is_alg_equation, get_eqs(sys))

"""
get_diff_eqs(sys::AbstractSystem)

For a system, returns a vector of all differential equations (i.e. that does contain a differential)
in its *top-level system*.

Example:
```julia
using ModelingToolkit
using ModelingToolkit: t_nounits as t, D_nounits as D
@parameters p d
@variables X(t)
eq1 = D(X) ~ p - d*X
eq2 = 0 ~ p - d*X
@named osys1 = ODESystem([eq1], t)
@named osys2 = ODESystem([eq2], t)
osys12 = compose(osys1, [osys2])
osys21 = compose(osys2, [osys1])

get_diff_eqs(osys12) # returns `[Differential(t)(X(t)) ~ p - d*X(t)]`.
get_diff_eqs(osys21) # returns `Equation[]``.
```
"""
get_diff_eqs(sys::AbstractSystem) = filter(is_diff_equation, get_eqs(sys))

"""
has_alg_eqs(sys::AbstractSystem)

For a system, returns true if it contain at least one algebraic equation (i.e. that does not contain any
differentials) in its *top-level system*.

Example:
```julia
using ModelingToolkit
using ModelingToolkit: t_nounits as t, D_nounits as D
@parameters p d
@variables X(t)
eq1 = D(X) ~ p - d*X
eq2 = 0 ~ p - d*X
@named osys1 = ODESystem([eq1], t)
@named osys2 = ODESystem([eq2], t)
osys12 = compose(osys1, [osys2])
osys21 = compose(osys2, [osys1])

has_alg_eqs(osys12) # returns `false`.
has_alg_eqs(osys21) # returns `true`.
```
"""
has_alg_eqs(sys::AbstractSystem) = any(is_alg_equation, get_eqs(sys))

"""
has_diff_eqs(sys::AbstractSystem)

For a system, returns true if it contain at least one differential equation (i.e. that contain a
differential) in its *top-level system*.

Example:
```julia
using ModelingToolkit
using ModelingToolkit: t_nounits as t, D_nounits as D
@parameters p d
@variables X(t)
eq1 = D(X) ~ p - d*X
eq2 = 0 ~ p - d*X
@named osys1 = ODESystem([eq1], t)
@named osys2 = ODESystem([eq2], t)
osys12 = compose(osys1, [osys2])
osys21 = compose(osys2, [osys1])

has_diff_eqs(osys12) # returns `true`.
has_diff_eqs(osys21) # returns `false`.
```
"""
has_diff_eqs(sys::AbstractSystem) = any(is_diff_equation, get_eqs(sys))
Loading