|
| 1 | +""" |
| 2 | + Source(; p, name) |
| 3 | +
|
| 4 | +Fixed pressure source |
| 5 | +
|
| 6 | +# Parameters: |
| 7 | +- `p`: [Pa] set pressure (set by `p` argument) |
| 8 | +
|
| 9 | +# Connectors: |
| 10 | +- `port`: hydraulic port |
| 11 | +""" |
| 12 | +@component function Source(; p, name) |
| 13 | + pars = @parameters begin p = p end |
| 14 | + |
| 15 | + vars = [] |
| 16 | + |
| 17 | + systems = @named begin port = HydraulicPort(; p_int = p) end |
| 18 | + |
| 19 | + eqs = [ |
| 20 | + port.p ~ p, |
| 21 | + ] |
| 22 | + |
| 23 | + ODESystem(eqs, t, vars, pars; name, systems) |
| 24 | +end |
| 25 | + |
| 26 | +""" |
| 27 | + InputSource(; p_int, name) |
| 28 | +
|
| 29 | +Fixed pressure source |
| 30 | +
|
| 31 | +# Parameters: |
| 32 | +- `p_int`: [Pa] initial pressure (set by `p_int` argument) |
| 33 | +
|
| 34 | +# Connectors: |
| 35 | +- `port`: hydraulic port |
| 36 | +""" |
| 37 | +@component function InputSource(; p_int, name) |
| 38 | + pars = @parameters begin p_int = p_int end |
| 39 | + |
| 40 | + vars = [] |
| 41 | + |
| 42 | + systems = @named begin |
| 43 | + port = HydraulicPort(; p_int) |
| 44 | + input = RealInput() |
| 45 | + end |
| 46 | + |
| 47 | + eqs = [ |
| 48 | + port.p ~ input.u, |
| 49 | + ] |
| 50 | + |
| 51 | + ODESystem(eqs, t, vars, pars; name, systems) |
| 52 | +end |
| 53 | + |
| 54 | +""" |
| 55 | + Cap(; p_int, name) |
| 56 | +
|
| 57 | +Caps a hydrualic port to prevent mass flow in or out. |
| 58 | +
|
| 59 | +# Parameters: |
| 60 | +- `p_int`: [Pa] initial pressure (set by `p_int` argument) |
| 61 | +
|
| 62 | +# Connectors: |
| 63 | +- `port`: hydraulic port |
| 64 | +""" |
| 65 | +@component function Cap(; p_int, name) |
| 66 | + pars = @parameters p_int = p_int |
| 67 | + |
| 68 | + vars = @variables p(t) = p_int |
| 69 | + |
| 70 | + systems = @named begin port = HydraulicPort(; p_int = p_int) end |
| 71 | + |
| 72 | + eqs = [port.p ~ p |
| 73 | + port.dm ~ 0] |
| 74 | + |
| 75 | + ODESystem(eqs, t, vars, pars; name, systems) |
| 76 | +end |
| 77 | + |
| 78 | +""" |
| 79 | + FixedVolume(; vol, p_int, name) |
| 80 | +
|
| 81 | +Fixed fluid volume. |
| 82 | +
|
| 83 | +# Parameters: |
| 84 | +- `vol`: [m^3] fixed volume |
| 85 | +- `p_int`: [Pa] initial pressure |
| 86 | +
|
| 87 | +# Connectors: |
| 88 | +- `port`: hydraulic port |
| 89 | +""" |
| 90 | +@component function FixedVolume(; vol, p_int, name) |
| 91 | + pars = @parameters begin |
| 92 | + vol = vol |
| 93 | + p_int = p_int |
| 94 | + end |
| 95 | + |
| 96 | + systems = @named begin port = HydraulicPort(; p_int) end |
| 97 | + |
| 98 | + vars = @variables begin |
| 99 | + rho(t) = density(port, p_int) |
| 100 | + drho(t) = 0 |
| 101 | + end |
| 102 | + |
| 103 | + # let ------------------- |
| 104 | + dm = port.dm |
| 105 | + |
| 106 | + eqs = [D(rho) ~ drho |
| 107 | + rho ~ density(port, port.p) |
| 108 | + dm ~ drho * vol] |
| 109 | + |
| 110 | + ODESystem(eqs, t, vars, pars; name, systems) |
| 111 | +end |
| 112 | + |
| 113 | +""" |
| 114 | + PipeBase(; p_int, area, length, perimeter=2*sqrt(area*pi), shape_factor=64, name) |
| 115 | +
|
| 116 | +Pipe segement which models purely the fully developed flow friction, ignoring any compressibility. |
| 117 | +
|
| 118 | +# Parameters: |
| 119 | +- `p_int`: [Pa] initial pressure (set by `p_int` argument) |
| 120 | +- `area`: [m^2] tube cross sectional area (set by `area` argument) |
| 121 | +- `length`: [m] length of the pipe (set by `length` argument) |
| 122 | +- `perimeter`: [m] perimeter of the pipe cross section (set by optional `perimeter` argument, needed only for non-circular pipes) |
| 123 | +- `Φ`: shape factor, see `friction_factor` function (set by optional `shape_factor` argument, needed only for non-circular pipes). |
| 124 | +
|
| 125 | +# Connectors: |
| 126 | +- `port_a`: hydraulic port |
| 127 | +- `port_b`: hydraulic port |
| 128 | +""" |
| 129 | +@component function PipeBase(; p_int, area, length, perimeter = 2 * sqrt(area * pi), |
| 130 | + shape_factor = 64, name) |
| 131 | + pars = @parameters begin |
| 132 | + p_int = p_int |
| 133 | + area = area |
| 134 | + length = length |
| 135 | + perimeter = perimeter |
| 136 | + Φ = shape_factor |
| 137 | + end |
| 138 | + |
| 139 | + vars = [] |
| 140 | + |
| 141 | + systems = @named begin |
| 142 | + port_a = HydraulicPort(; p_int) |
| 143 | + port_b = HydraulicPort(; p_int) |
| 144 | + end |
| 145 | + |
| 146 | + # let ---------------------- |
| 147 | + Δp = port_a.p - port_b.p |
| 148 | + dm = port_a.dm |
| 149 | + |
| 150 | + d_h = 4 * area / perimeter |
| 151 | + |
| 152 | + ρ = (density(port_a, port_a.p) + density(port_b, port_b.p)) / 2 |
| 153 | + μ = viscosity(port_a) |
| 154 | + |
| 155 | + f = friction_factor(dm, area, d_h, ρ, μ, Φ) |
| 156 | + u = dm / (ρ * area) |
| 157 | + |
| 158 | + eqs = [Δp ~ 1 / 2 * ρ * u^2 * f * (length / d_h) |
| 159 | + 0 ~ port_a.dm + port_b.dm] |
| 160 | + |
| 161 | + ODESystem(eqs, t, vars, pars; name, systems) |
| 162 | +end |
| 163 | + |
| 164 | +""" |
| 165 | + Pipe(N; p_int, area, length, perimeter=2*sqrt(area*pi), shape_factor=64, name) |
| 166 | +
|
| 167 | +Pipe modeled with `N` segements which models the fully developed flow friction and compressibility. |
| 168 | +
|
| 169 | +# Parameters: |
| 170 | +- `p_int`: [Pa] initial pressure (set by `p_int` argument) |
| 171 | +- `area`: [m^2] tube cross sectional area (set by `area` argument) |
| 172 | +- `length`: [m] length of the pipe (set by `length` argument) |
| 173 | +- `perimeter`: [m] perimeter of the pipe cross section (set by optional `perimeter` argument, needed only for non-circular pipes) |
| 174 | +- `Φ`: shape factor, see `friction_factor` function (set by optional `shape_factor` argument, needed only for non-circular pipes). |
| 175 | +
|
| 176 | +# Connectors: |
| 177 | +- `port_a`: hydraulic port |
| 178 | +- `port_b`: hydraulic port |
| 179 | +""" |
| 180 | +@component function Pipe(N; p_int, area, length, perimeter = 2 * sqrt(area * pi), |
| 181 | + shape_factor = 64, name) |
| 182 | + @assert(N>1, |
| 183 | + "the pipe component must be defined with more than 1 segment (i.e. N>1), found N=$N") |
| 184 | + |
| 185 | + pars = @parameters begin |
| 186 | + p_int = p_int |
| 187 | + area = area |
| 188 | + length = length |
| 189 | + perimeter = perimeter |
| 190 | + Φ = shape_factor |
| 191 | + end |
| 192 | + |
| 193 | + vars = [] |
| 194 | + |
| 195 | + ports = @named begin |
| 196 | + port_a = HydraulicPort(; p_int) |
| 197 | + port_b = HydraulicPort(; p_int) |
| 198 | + end |
| 199 | + |
| 200 | + pipe_bases = [] |
| 201 | + for i in 1:(N - 1) |
| 202 | + x = PipeBase(; name = Symbol("p$i"), shape_factor = ParentScope(Φ), |
| 203 | + p_int = ParentScope(p_int), area = ParentScope(area), |
| 204 | + length = ParentScope(length) / (N - 1), |
| 205 | + perimeter = ParentScope(perimeter)) |
| 206 | + push!(pipe_bases, x) |
| 207 | + end |
| 208 | + |
| 209 | + volumes = [] |
| 210 | + for i in 1:N |
| 211 | + x = FixedVolume(; name = Symbol("v$i"), |
| 212 | + vol = ParentScope(area) * ParentScope(length) / N, |
| 213 | + p_int = ParentScope(p_int)) |
| 214 | + push!(volumes, x) |
| 215 | + end |
| 216 | + |
| 217 | + eqs = [connect(volumes[1].port, pipe_bases[1].port_a, port_a) |
| 218 | + connect(volumes[end].port, pipe_bases[end].port_b, port_b)] |
| 219 | + |
| 220 | + for i in 2:(N - 1) |
| 221 | + eq = connect(volumes[i].port, pipe_bases[i - 1].port_b, pipe_bases[i].port_a) |
| 222 | + push!(eqs, eq) |
| 223 | + end |
| 224 | + |
| 225 | + ODESystem(eqs, t, vars, pars; name, systems = [ports; pipe_bases; volumes]) |
| 226 | +end |
| 227 | + |
| 228 | +""" |
| 229 | + DynamicVolume(; p_int, x_int=0, area, dead_volume=0, direction=+1, name) |
| 230 | +
|
| 231 | +Volume with moving wall. The `direction` argument aligns the mechanical port with the hydraulic port, useful when connecting two dynamic volumes together in oppsing directions to create an actuator. |
| 232 | +``` |
| 233 | + ┌─────────────────┐ ─── |
| 234 | + │ │ ▲ |
| 235 | + │ │ |
| 236 | +dm ────► dead volume │ │ area |
| 237 | + │ │ |
| 238 | + │ │ ▼ |
| 239 | + └─────────────────┤ ─── |
| 240 | + │ |
| 241 | + └─► x (= flange.v * direction) |
| 242 | +``` |
| 243 | +
|
| 244 | +# Parameters: |
| 245 | +- `p_int`: [Pa] initial pressure (set by `p_int` argument) |
| 246 | +- `x_int`: [m] initial position of the moving wall (set by the `x_int` argument) |
| 247 | +- `area`: [m^2] moving wall area (set by the `area` argument) |
| 248 | +- `dead_volume`: [m^3] perimeter of the pipe cross section (set by optional `perimeter` argument, needed only for non-circular pipes) |
| 249 | +
|
| 250 | +# Connectors: |
| 251 | +- `port`: hydraulic port |
| 252 | +- `flange`: mechanical translational port |
| 253 | +""" |
| 254 | +@component function DynamicVolume(; p_int, x_int = 0, area, dead_volume = 0, direction = +1, |
| 255 | + name) |
| 256 | + @assert (direction == +1)||(direction == -1) "direction arument must be +/-1, found $direction" |
| 257 | + |
| 258 | + pars = @parameters begin |
| 259 | + p_int = p_int |
| 260 | + x_int = x_int |
| 261 | + area = area |
| 262 | + dead_volume = dead_volume |
| 263 | + end |
| 264 | + |
| 265 | + systems = @named begin |
| 266 | + port = HydraulicPort(; p_int) |
| 267 | + flange = MechanicalPort() |
| 268 | + end |
| 269 | + |
| 270 | + vars = @variables begin |
| 271 | + x(t) = x_int |
| 272 | + dx(t) = 0 |
| 273 | + rho(t) = density(port, p_int) |
| 274 | + drho(t) = 0 |
| 275 | + end |
| 276 | + |
| 277 | + # let ------------- |
| 278 | + vol = dead_volume + area * x |
| 279 | + |
| 280 | + eqs = [D(x) ~ dx |
| 281 | + D(rho) ~ drho |
| 282 | + dx ~ flange.v * direction |
| 283 | + rho ~ density(port, port.p) |
| 284 | + port.dm ~ drho * vol + rho * area * dx |
| 285 | + flange.f ~ -port.p * area * direction] |
| 286 | + |
| 287 | + ODESystem(eqs, t, vars, pars; name, systems) |
| 288 | +end |
0 commit comments