Skip to content

reapply formatter #708

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Feb 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 2 additions & 1 deletion .JuliaFormatter.toml
Original file line number Diff line number Diff line change
@@ -1,2 +1,3 @@
style = "sciml"
format_markdown = true
format_markdown = true
format_docstrings = true
10 changes: 5 additions & 5 deletions docs/pages.jl
Original file line number Diff line number Diff line change
Expand Up @@ -4,18 +4,18 @@ pages = ["index.md",
"tutorials/minibatch.md",
"tutorials/symbolic.md",
"tutorials/constraints.md",
"tutorials/linearandinteger.md",
"tutorials/linearandinteger.md"
],
"Examples" => [
"examples/rosenbrock.md",
"examples/rosenbrock.md"
],
"Basics" => [
"API/optimization_problem.md",
"API/optimization_function.md",
"API/solve.md",
"API/optimization_solution.md",
"API/modelingtoolkit.md",
"API/FAQ.md",
"API/FAQ.md"
],
"Optimizer Packages" => [
"BlackBoxOptim.jl" => "optimization_packages/blackboxoptim.md",
Expand All @@ -33,6 +33,6 @@ pages = ["index.md",
"PRIMA.jl" => "optimization_packages/prima.md",
"Polyalgorithms.jl" => "optimization_packages/polyopt.md",
"QuadDIRECT.jl" => "optimization_packages/quaddirect.md",
"SpeedMapping.jl" => "optimization_packages/speedmapping.md",
],
"SpeedMapping.jl" => "optimization_packages/speedmapping.md"
]
]
1 change: 1 addition & 0 deletions docs/src/optimization_packages/optim.md
Original file line number Diff line number Diff line change
Expand Up @@ -58,6 +58,7 @@ For a more extensive documentation of all the algorithms and options, please con
- [`Optim.IPNewton()`](https://julianlsolvers.github.io/Optim.jl/stable/#algo/ipnewton/)

+ `μ0` specifies the initial barrier penalty coefficient as either a number or `:auto`

+ `show_linesearch` is an option to turn on linesearch verbosity.
+ Defaults:

Expand Down
10 changes: 5 additions & 5 deletions docs/src/tutorials/linearandinteger.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,11 +44,11 @@ using Optimization, OptimizationMOI, ModelingToolkit, HiGHS, LinearAlgebra
@variables m [bounds = (0.0, Inf)]

cons = [u[1] + v[1] - w[1] ~ 150 # January
u[2] + v[2] - w[2] - 1.01u[1] + 1.003w[1] ~ 100 # February
u[3] + v[3] - w[3] - 1.01u[2] + 1.003w[2] ~ -200 # March
u[4] - w[4] - 1.02v[1] - 1.01u[3] + 1.003w[3] ~ 200 # April
u[5] - w[5] - 1.02v[2] - 1.01u[4] + 1.003w[4] ~ -50 # May
-m - 1.02v[3] - 1.01u[5] + 1.003w[5] ~ -300]
u[2] + v[2] - w[2] - 1.01u[1] + 1.003w[1] ~ 100 # February
u[3] + v[3] - w[3] - 1.01u[2] + 1.003w[2] ~ -200 # March
u[4] - w[4] - 1.02v[1] - 1.01u[3] + 1.003w[3] ~ 200 # April
u[5] - w[5] - 1.02v[2] - 1.01u[4] + 1.003w[4] ~ -50 # May
-m - 1.02v[3] - 1.01u[5] + 1.003w[5] ~ -300]

@named optsys = OptimizationSystem(m, [u..., v..., w..., m], [], constraints = cons)
optprob = OptimizationProblem(optsys,
Expand Down
3 changes: 2 additions & 1 deletion docs/src/tutorials/minibatch.md
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,8 @@ train_loader = Flux.Data.DataLoader((ode_data, t), batchsize = k)
numEpochs = 300
l1 = loss_adjoint(pp, train_loader.data[1], train_loader.data[2])[1]

optfun = OptimizationFunction((θ, p, batch, time_batch) -> loss_adjoint(θ, batch,
optfun = OptimizationFunction(
(θ, p, batch, time_batch) -> loss_adjoint(θ, batch,
time_batch),
Optimization.AutoZygote())
optprob = OptimizationProblem(optfun, pp)
Expand Down
4 changes: 2 additions & 2 deletions docs/src/tutorials/symbolic.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,9 +34,9 @@ our parameter values are and the initial conditions. This looks like:

```@example modelingtoolkit
u0 = [x => 1.0
y => 2.0]
y => 2.0]
p = [a => 6.0
b => 7.0]
b => 7.0]
```

And now we solve.
Expand Down
6 changes: 4 additions & 2 deletions ext/OptimizationFiniteDiffExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,8 @@ function Optimization.instantiate_function(f, x, adtype::AutoFiniteDiff, p,

if f.grad === nothing
gradcache = FD.GradientCache(x, x, adtype.fdtype)
grad = (res, θ, args...) -> FD.finite_difference_gradient!(res, x -> _f(x, args...),
grad = (res, θ, args...) -> FD.finite_difference_gradient!(
res, x -> _f(x, args...),
θ, gradcache)
else
grad = (G, θ, args...) -> f.grad(G, θ, p, args...)
Expand Down Expand Up @@ -123,7 +124,8 @@ function Optimization.instantiate_function(f, cache::Optimization.ReInitCache,

if f.grad === nothing
gradcache = FD.GradientCache(cache.u0, cache.u0, adtype.fdtype)
grad = (res, θ, args...) -> FD.finite_difference_gradient!(res, x -> _f(x, args...),
grad = (res, θ, args...) -> FD.finite_difference_gradient!(
res, x -> _f(x, args...),
θ, gradcache)
else
grad = (G, θ, args...) -> f.grad(G, θ, cache.p, args...)
Expand Down
4 changes: 2 additions & 2 deletions ext/OptimizationForwardDiffExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ function Optimization.instantiate_function(f::OptimizationFunction{true}, x,
if cons !== nothing && f.cons_h === nothing
fncs = [(x) -> cons_oop(x)[i] for i in 1:num_cons]
hess_config_cache = [ForwardDiff.HessianConfig(fncs[i], x,
ForwardDiff.Chunk{chunksize}())
ForwardDiff.Chunk{chunksize}())
for i in 1:num_cons]
cons_h = function (res, θ)
for i in 1:num_cons
Expand Down Expand Up @@ -143,7 +143,7 @@ function Optimization.instantiate_function(f::OptimizationFunction{true},
if cons !== nothing && f.cons_h === nothing
fncs = [(x) -> cons_oop(x)[i] for i in 1:num_cons]
hess_config_cache = [ForwardDiff.HessianConfig(fncs[i], cache.u0,
ForwardDiff.Chunk{chunksize}())
ForwardDiff.Chunk{chunksize}())
for i in 1:num_cons]
cons_h = function (res, θ)
for i in 1:num_cons
Expand Down
3 changes: 2 additions & 1 deletion ext/OptimizationMTKExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,8 @@ function Optimization.instantiate_function(f, cache::Optimization.ReInitCache,
adtype::AutoModelingToolkit, num_cons = 0)
p = isnothing(cache.p) ? SciMLBase.NullParameters() : cache.p

sys = complete(ModelingToolkit.modelingtoolkitize(OptimizationProblem(f, cache.u0, cache.p;
sys = complete(ModelingToolkit.modelingtoolkitize(OptimizationProblem(
f, cache.u0, cache.p;
lcons = fill(0.0,
num_cons),
ucons = fill(0.0,
Expand Down
16 changes: 8 additions & 8 deletions ext/OptimizationReverseDiffExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -48,7 +48,7 @@ function Optimization.instantiate_function(f, x, adtype::AutoReverseDiff,
xdual = ForwardDiff.Dual{
typeof(T),
eltype(x),
chunksize,
chunksize
}.(x, Ref(ForwardDiff.Partials((ones(eltype(x), chunksize)...,))))
h_tape = ReverseDiff.GradientTape(_f, xdual)
htape = ReverseDiff.compile(h_tape)
Expand Down Expand Up @@ -118,9 +118,9 @@ function Optimization.instantiate_function(f, x, adtype::AutoReverseDiff,
end
gs = [x -> grad_cons(x, conshtapes[i]) for i in 1:num_cons]
jaccfgs = [ForwardDiff.JacobianConfig(gs[i],
x,
ForwardDiff.Chunk{chunksize}(),
T) for i in 1:num_cons]
x,
ForwardDiff.Chunk{chunksize}(),
T) for i in 1:num_cons]
cons_h = function (res, θ)
for i in 1:num_cons
ForwardDiff.jacobian!(res[i], gs[i], θ, jaccfgs[i], Val{false}())
Expand Down Expand Up @@ -180,7 +180,7 @@ function Optimization.instantiate_function(f, cache::Optimization.ReInitCache,
xdual = ForwardDiff.Dual{
typeof(T),
eltype(cache.u0),
chunksize,
chunksize
}.(cache.u0, Ref(ForwardDiff.Partials((ones(eltype(cache.u0), chunksize)...,))))
h_tape = ReverseDiff.GradientTape(_f, xdual)
htape = ReverseDiff.compile(h_tape)
Expand Down Expand Up @@ -253,9 +253,9 @@ function Optimization.instantiate_function(f, cache::Optimization.ReInitCache,
end
gs = [x -> grad_cons(x, conshtapes[i]) for i in 1:num_cons]
jaccfgs = [ForwardDiff.JacobianConfig(gs[i],
cache.u0,
ForwardDiff.Chunk{chunksize}(),
T) for i in 1:num_cons]
cache.u0,
ForwardDiff.Chunk{chunksize}(),
T) for i in 1:num_cons]
cons_h = function (res, θ)
for i in 1:num_cons
ForwardDiff.jacobian!(res[i], gs[i], θ, jaccfgs[i], Val{false}())
Expand Down
74 changes: 39 additions & 35 deletions ext/OptimizationSparseDiffExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -3,13 +3,13 @@ module OptimizationSparseDiffExt
import Optimization, Optimization.ArrayInterface
import Optimization.SciMLBase: OptimizationFunction
import Optimization.ADTypes: AutoSparseForwardDiff,
AutoSparseFiniteDiff, AutoSparseReverseDiff
AutoSparseFiniteDiff, AutoSparseReverseDiff
using Optimization.LinearAlgebra, ReverseDiff
isdefined(Base, :get_extension) ?
(using SparseDiffTools,
SparseDiffTools.ForwardDiff, SparseDiffTools.FiniteDiff, Symbolics) :
SparseDiffTools.ForwardDiff, SparseDiffTools.FiniteDiff, Symbolics) :
(using ..SparseDiffTools,
..SparseDiffTools.ForwardDiff, ..SparseDiffTools.FiniteDiff, ..Symbolics)
..SparseDiffTools.ForwardDiff, ..SparseDiffTools.FiniteDiff, ..Symbolics)

function default_chunk_size(len)
if len < ForwardDiff.DEFAULT_CHUNK_THRESHOLD
Expand Down Expand Up @@ -98,8 +98,8 @@ function Optimization.instantiate_function(f::OptimizationFunction{true}, x,
end

fcons = [(x) -> (_res = zeros(eltype(x), num_cons);
cons(_res, x);
_res[i]) for i in 1:num_cons]
cons(_res, x);
_res[i]) for i in 1:num_cons]
cons_hess_caches = gen_conshess_cache.(fcons, Ref(x))
cons_h = function (res, θ)
for i in 1:num_cons
Expand Down Expand Up @@ -205,8 +205,8 @@ function Optimization.instantiate_function(f::OptimizationFunction{true},
end

fcons = [(x) -> (_res = zeros(eltype(x), num_cons);
cons(_res, x);
_res[i]) for i in 1:num_cons]
cons(_res, x);
_res[i]) for i in 1:num_cons]
cons_hess_caches = gen_conshess_cache.(fcons, Ref(cache.u0))
cons_h = function (res, θ)
for i in 1:num_cons
Expand Down Expand Up @@ -246,7 +246,8 @@ function Optimization.instantiate_function(f, x, adtype::AutoSparseFiniteDiff, p

if f.grad === nothing
gradcache = FD.GradientCache(x, x)
grad = (res, θ, args...) -> FD.finite_difference_gradient!(res, x -> _f(x, args...),
grad = (res, θ, args...) -> FD.finite_difference_gradient!(
res, x -> _f(x, args...),
θ, gradcache)
else
grad = (G, θ, args...) -> f.grad(G, θ, p, args...)
Expand Down Expand Up @@ -314,8 +315,8 @@ function Optimization.instantiate_function(f, x, adtype::AutoSparseFiniteDiff, p
end

fcons = [(x) -> (_res = zeros(eltype(x), num_cons);
cons(_res, x);
_res[i]) for i in 1:num_cons]
cons(_res, x);
_res[i]) for i in 1:num_cons]
conshess_caches = gen_conshess_cache.(fcons, Ref(x))
cons_h = function (res, θ)
for i in 1:num_cons
Expand Down Expand Up @@ -370,7 +371,8 @@ function Optimization.instantiate_function(f, cache::Optimization.ReInitCache,

if f.grad === nothing
gradcache = FD.GradientCache(cache.u0, cache.u0)
grad = (res, θ, args...) -> FD.finite_difference_gradient!(res, x -> _f(x, args...),
grad = (res, θ, args...) -> FD.finite_difference_gradient!(
res, x -> _f(x, args...),
θ, gradcache)
else
grad = (G, θ, args...) -> f.grad(G, θ, cache.p, args...)
Expand Down Expand Up @@ -439,8 +441,8 @@ function Optimization.instantiate_function(f, cache::Optimization.ReInitCache,
end

fcons = [(x) -> (_res = zeros(eltype(x), num_cons);
cons(_res, x);
_res[i]) for i in 1:num_cons]
cons(_res, x);
_res[i]) for i in 1:num_cons]
conshess_caches = [gen_conshess_cache(fcons[i], cache.u0) for i in 1:num_cons]
cons_h = function (res, θ)
for i in 1:num_cons
Expand Down Expand Up @@ -527,7 +529,7 @@ function Optimization.instantiate_function(f, x, adtype::AutoSparseReverseDiff,
xdual = ForwardDiff.Dual{
typeof(T),
eltype(x),
min(chunksize, maximum(hess_colors)),
min(chunksize, maximum(hess_colors))
}.(x,
Ref(ForwardDiff.Partials((ones(eltype(x),
min(chunksize, maximum(hess_colors)))...,))))
Expand Down Expand Up @@ -611,23 +613,24 @@ function Optimization.instantiate_function(f, x, adtype::AutoSparseReverseDiff,
if adtype.compile
T = ForwardDiff.Tag(OptimizationSparseReverseTag(), eltype(x))
xduals = [ForwardDiff.Dual{
typeof(T),
eltype(x),
min(chunksize, maximum(conshess_colors[i])),
}.(x,
Ref(ForwardDiff.Partials((ones(eltype(x),
min(chunksize, maximum(conshess_colors[i])))...,)))) for i in 1:num_cons]
typeof(T),
eltype(x),
min(chunksize, maximum(conshess_colors[i]))
}.(x,
Ref(ForwardDiff.Partials((ones(eltype(x),
min(chunksize, maximum(conshess_colors[i])))...,))))
for i in 1:num_cons]
consh_tapes = [ReverseDiff.GradientTape(fncs[i], xduals[i]) for i in 1:num_cons]
conshtapes = ReverseDiff.compile.(consh_tapes)
function grad_cons(res1, θ, htape)
ReverseDiff.gradient!(res1, htape, θ)
end
gs = [(res1, x) -> grad_cons(res1, x, conshtapes[i]) for i in 1:num_cons]
jaccfgs = [ForwardColorJacCache(gs[i],
x;
tag = typeof(T),
colorvec = conshess_colors[i],
sparsity = conshess_sparsity[i]) for i in 1:num_cons]
x;
tag = typeof(T),
colorvec = conshess_colors[i],
sparsity = conshess_sparsity[i]) for i in 1:num_cons]
cons_h = function (res, θ, args...)
for i in 1:num_cons
SparseDiffTools.forwarddiff_color_jacobian!(res[i],
Expand Down Expand Up @@ -701,7 +704,7 @@ function Optimization.instantiate_function(f, cache::Optimization.ReInitCache,
xdual = ForwardDiff.Dual{
typeof(T),
eltype(cache.u0),
min(chunksize, maximum(hess_colors)),
min(chunksize, maximum(hess_colors))
}.(cache.u0,
Ref(ForwardDiff.Partials((ones(eltype(cache.u0),
min(chunksize, maximum(hess_colors)))...,))))
Expand Down Expand Up @@ -802,12 +805,13 @@ function Optimization.instantiate_function(f, cache::Optimization.ReInitCache,
if adtype.compile
T = ForwardDiff.Tag(OptimizationSparseReverseTag(), eltype(cache.u0))
xduals = [ForwardDiff.Dual{
typeof(T),
eltype(cache.u0),
min(chunksize, maximum(conshess_colors[i])),
}.(cache.u0,
Ref(ForwardDiff.Partials((ones(eltype(cache.u0),
min(chunksize, maximum(conshess_colors[i])))...,)))) for i in 1:num_cons]
typeof(T),
eltype(cache.u0),
min(chunksize, maximum(conshess_colors[i]))
}.(cache.u0,
Ref(ForwardDiff.Partials((ones(eltype(cache.u0),
min(chunksize, maximum(conshess_colors[i])))...,))))
for i in 1:num_cons]
consh_tapes = [ReverseDiff.GradientTape(fncs[i], xduals[i]) for i in 1:num_cons]
conshtapes = ReverseDiff.compile.(consh_tapes)
function grad_cons(res1, θ, htape)
Expand All @@ -821,10 +825,10 @@ function Optimization.instantiate_function(f, cache::Optimization.ReInitCache,
end
end
jaccfgs = [ForwardColorJacCache(gs[i],
cache.u0;
tag = typeof(T),
colorvec = conshess_colors[i],
sparsity = conshess_sparsity[i]) for i in 1:num_cons]
cache.u0;
tag = typeof(T),
colorvec = conshess_colors[i],
sparsity = conshess_sparsity[i]) for i in 1:num_cons]
cons_h = function (res, θ)
for i in 1:num_cons
SparseDiffTools.forwarddiff_color_jacobian!(res[i],
Expand Down
6 changes: 4 additions & 2 deletions ext/OptimizationTrackerExt.jl
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,8 @@ function Optimization.instantiate_function(f, x, adtype::AutoTracker, p,
_f = (θ, args...) -> first(f.f(θ, p, args...))

if f.grad === nothing
grad = (res, θ, args...) -> res .= Tracker.data(Tracker.gradient(x -> _f(x, args...),
grad = (res, θ, args...) -> res .= Tracker.data(Tracker.gradient(
x -> _f(x, args...),
θ)[1])
else
grad = (G, θ, args...) -> f.grad(G, θ, p, args...)
Expand Down Expand Up @@ -42,7 +43,8 @@ function Optimization.instantiate_function(f, cache::Optimization.ReInitCache,
_f = (θ, args...) -> first(f.f(θ, cache.p, args...))

if f.grad === nothing
grad = (res, θ, args...) -> res .= Tracker.data(Tracker.gradient(x -> _f(x, args...),
grad = (res, θ, args...) -> res .= Tracker.data(Tracker.gradient(
x -> _f(x, args...),
θ)[1])
else
grad = (G, θ, args...) -> f.grad(G, θ, cache.p, args...)
Expand Down
4 changes: 2 additions & 2 deletions lib/OptimizationBBO/src/OptimizationBBO.jl
Original file line number Diff line number Diff line change
Expand Up @@ -88,7 +88,7 @@ function SciMLBase.__solve(cache::Optimization.OptimizationCache{
O,
D,
P,
C,
C
}) where {
F,
RC,
Expand All @@ -101,7 +101,7 @@ function SciMLBase.__solve(cache::Optimization.OptimizationCache{
BBO,
D,
P,
C,
C
}
local x, cur, state

Expand Down
Loading