Skip to content

feat: add gemini embeddings #153

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
May 5, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 10 additions & 11 deletions scrapegraphai/graphs/abstract_graph.py
Original file line number Diff line number Diff line change
@@ -1,16 +1,14 @@
"""
AbstractGraph Module
"""

from abc import ABC, abstractmethod
from typing import Optional

from langchain_aws.embeddings.bedrock import BedrockEmbeddings
from langchain_community.embeddings import HuggingFaceHubEmbeddings, OllamaEmbeddings
from langchain_openai import AzureOpenAIEmbeddings, OpenAIEmbeddings

from langchain_community.embeddings import HuggingFaceHubEmbeddings, OllamaEmbeddings
from ..helpers import models_tokens
from ..models import AzureOpenAI, Bedrock, Gemini, Groq, HuggingFace, Ollama, OpenAI, Claude
from langchain_aws.embeddings.bedrock import BedrockEmbeddings
from langchain_google_genai import GoogleGenerativeAIEmbeddings


class AbstractGraph(ABC):
Expand Down Expand Up @@ -69,7 +67,7 @@ def _set_model_token(self, llm):
self.model_token = models_tokens["azure"][llm.model_name]
except KeyError:
raise KeyError("Model not supported")

elif 'HuggingFaceEndpoint' in str(type(llm)):
if 'mistral' in llm.repo_id:
try:
Expand Down Expand Up @@ -229,29 +227,30 @@ def _create_embedder(self, embedder_config: dict) -> object:

if 'model_instance' in embedder_config:
return embedder_config['model_instance']

# Instantiate the embedding model based on the model name
if "openai" in embedder_config["model"]:
return OpenAIEmbeddings(api_key=embedder_config["api_key"])

elif "azure" in embedder_config["model"]:
return AzureOpenAIEmbeddings()

elif "ollama" in embedder_config["model"]:
embedder_config["model"] = embedder_config["model"].split("/")[-1]
try:
models_tokens["ollama"][embedder_config["model"]]
except KeyError as exc:
raise KeyError("Model not supported") from exc
return OllamaEmbeddings(**embedder_config)

elif "hugging_face" in embedder_config["model"]:
try:
models_tokens["hugging_face"][embedder_config["model"]]
except KeyError as exc:
raise KeyError("Model not supported")from exc
return HuggingFaceHubEmbeddings(model=embedder_config["model"])

elif "gemini" in embedder_config["model"]:
try:
models_tokens["gemini"][embedder_config["model"]]
except KeyError as exc:
raise KeyError("Model not supported")from exc
return GoogleGenerativeAIEmbeddings(model=embedder_config["model"])
elif "bedrock" in embedder_config["model"]:
embedder_config["model"] = embedder_config["model"].split("/")[-1]
try:
Expand Down