Skip to content

Initial commit of conjugate gradient method #2486

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Merged
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
174 changes: 174 additions & 0 deletions linear_algebra/src/conjugate_gradient.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,174 @@
import numpy as np
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Please add a URL that can help the reader learn about the problems that your algorithm is trying to solve...
https://en.wikipedia.org/wiki/Conjugate_gradient_method
https://en.wikipedia.org/wiki/Definite_symmetric_matrix

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Added :)


# https://en.wikipedia.org/wiki/Conjugate_gradient_method
# https://en.wikipedia.org/wiki/Definite_symmetric_matrix


def _is_matrix_spd(matrix: np.array) -> bool:

"""
Returns True if input matrix is symmetric positive definite.
Returns False otherwise.

For a matrix to be SPD, all eigenvalues must be positive.

>>> import numpy as np
>>> matrix = np.array([
... [4.12401784, -5.01453636, -0.63865857],
... [-5.01453636, 12.33347422, -3.40493586],
... [-0.63865857, -3.40493586, 5.78591885]])
>>> _is_matrix_spd(matrix)
True
>>> matrix = np.array([
... [0.34634879, 1.96165514, 2.18277744],
... [0.74074469, -1.19648894, -1.34223498],
... [-0.7687067 , 0.06018373, -1.16315631]])
>>> _is_matrix_spd(matrix)
False
"""
# Ensure matrix is square.
assert np.shape(matrix)[0] == np.shape(matrix)[1]

# If matrix not symmetric, exit right away.
if np.allclose(matrix, matrix.T) is False:
return False

# Get eigenvalues and eignevectors for a symmetric matrix.
eigen_values, _ = np.linalg.eigh(matrix)

# Check sign of all eigenvalues.
return np.all(eigen_values > 0)


def _create_spd_matrix(dimension: np.int64) -> np.array:
"""
Returns a symmetric positive definite matrix given a dimension.

Input:
dimension gives the square matrix dimension.

Output:
spd_matrix is an diminesion x dimensions symmetric positive definite (SPD) matrix.

>>> import numpy as np
>>> dimension = 3
>>> spd_matrix = _create_spd_matrix(dimension)
>>> _is_matrix_spd(spd_matrix)
True
"""

random_matrix = np.random.randn(dimension, dimension)
spd_matrix = np.dot(random_matrix, random_matrix.T)

assert _is_matrix_spd(spd_matrix)

return spd_matrix


def conjugate_gradient(
spd_matrix: np.array, b: np.array, max_iterations=1000, tol=1e-8
) -> np.array:
"""
Returns solution to the linear system np.dot(spd_matrix, x) = b.

Input:
spd_matrix is an NxN Symmetric Positive Definite (SPD) matrix.
b is an Nx1 vector that is the load vector.

Output:
x is an Nx1 vector that is the solution vector.

>>> import numpy as np
>>> spd_matrix = np.array([
... [8.73256573, -5.02034289, -2.68709226],
... [-5.02034289, 3.78188322, 0.91980451],
... [-2.68709226, 0.91980451, 1.94746467]])
>>> b = np.array([
... [-5.80872761],
... [ 3.23807431],
... [ 1.95381422]])
>>> conjugate_gradient(spd_matrix,b)
array([[-0.63114139],
[-0.01561498],
[ 0.13979294]])
"""
# Ensure proper dimensionality.
assert np.shape(spd_matrix)[0] == np.shape(spd_matrix)[1]
assert np.shape(b)[0] == np.shape(spd_matrix)[0]
assert _is_matrix_spd(spd_matrix)

# Initialize solution guess, residual, search direction.
x0 = np.zeros((np.shape(b)[0], 1))
r0 = np.copy(b)
p0 = np.copy(r0)

# Set initial errors in solution guess and residual.
error_residual = 1e9
error_x_solution = 1e9
error = 1e9

# Set iteration counter to threshold number of iterations.
iterations = 0

while error > tol:

# Save this value so we only calculate the matrix-vector product once.
w = np.dot(spd_matrix, p0)

# The main algorithm.

# Update search direction magnitude.
alpha = np.dot(r0.T, r0) / np.dot(p0.T, w)
# Update solution guess.
x = x0 + alpha * p0
# Calculate new residual.
r = r0 - alpha * w
# Calculate new Krylov subspace scale.
beta = np.dot(r.T, r) / np.dot(r0.T, r0)
# Calculate new A conjuage search direction.
p = r + beta * p0

# Calculate errors.
error_residual = np.linalg.norm(r - r0)
error_x_solution = np.linalg.norm(x - x0)
error = np.maximum(error_residual, error_x_solution)

# Update variables.
x0 = np.copy(x)
r0 = np.copy(r)
p0 = np.copy(p)

# Update number of iterations.
iterations += 1

return x


def test_conjugate_gradient() -> None:

"""
>>> test_conjugate_gradient() # self running tests
"""

# Create linear system with SPD matrix and known solution x_true.
dimension = 3
spd_matrix = _create_spd_matrix(dimension)
x_true = np.random.randn(dimension, 1)
b = np.dot(spd_matrix, x_true)

# Numpy solution.
x_numpy = np.linalg.solve(spd_matrix, b)

# Our implementation.
x_conjugate_gradient = conjugate_gradient(spd_matrix, b)

# Ensure both solutions are close to x_true (and therefore one another).
assert np.linalg.norm(x_numpy - x_true) <= 1e-6
assert np.linalg.norm(x_conjugate_gradient - x_true) <= 1e-6


if __name__ == "__main__":
import doctest

doctest.testmod()
test_conjugate_gradient()