-
-
Notifications
You must be signed in to change notification settings - Fork 46.9k
add similarity_search.py in machine_learning #3864
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 3 commits
40a6503
09caa3b
7ce2cce
f38fb3e
ebfe05a
2d2c6b8
9637de7
6f7c9ce
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change | ||||
---|---|---|---|---|---|---|
@@ -0,0 +1,113 @@ | ||||||
""" | ||||||
Simularity search is a search algorithm for finding the nearest vector from | ||||||
vectors, used in natural language processing. | ||||||
In this algorithm, it calculates distance with euclidean distance and | ||||||
returns a list containing two data for each vector: | ||||||
1. the nearest vector | ||||||
2. distance between the vector and the nearest vector | ||||||
""" | ||||||
import math | ||||||
from typing import Union | ||||||
|
||||||
import numpy as np | ||||||
|
||||||
InputVal = Union[int, float, np.ndarray] | ||||||
|
||||||
|
||||||
def euclidean(input_a: InputVal, input_b: InputVal): | ||||||
""" | ||||||
Calculates euclidean distance between two data. The result should be float. | ||||||
>>> euclidean(0, 1) | ||||||
1.0 | ||||||
>>> euclidean(np.array([0, 1]), np.array([1, 1])) | ||||||
1.0 | ||||||
>>> euclidean(np.array([0, 0, 0]), np.array([0, 0, 1])) | ||||||
1.0 | ||||||
""" | ||||||
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
dist = 0 | ||||||
|
||||||
if type(input_a) == type(input_b): | ||||||
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
if type(input_a) != np.ndarray: | ||||||
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
dist = pow(input_a - input_b, 2) | ||||||
else: | ||||||
for index in range(len(input_a)): | ||||||
dist += pow(input_a[index] - input_b[index], 2) | ||||||
return math.sqrt(dist) | ||||||
return None | ||||||
|
||||||
|
||||||
def similarity_search(dataset: np.ndarray, value: np.ndarray) -> list: | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more.
Suggested change
This is not a single value but an array of values. There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Changed! |
||||||
""" | ||||||
:param dataset: Set containing the vectors. | ||||||
:param value: vector/vectors we want to know the nearest vector from dataset. | ||||||
Result will be a list containing 1. the nearest vector, 2. distance from the vector | ||||||
>>> a = np.array([0, 1, 2]) | ||||||
>>> b = np.array([0]) | ||||||
>>> similarity_search(a, b) | ||||||
[[0, 0.0]] | ||||||
|
||||||
>>> a = np.array([[0, 0], [1, 1], [2, 2]]) | ||||||
>>> b = np.array([[0, 1]]) | ||||||
>>> similarity_search(a, b) | ||||||
[[[0, 0], 1.0]] | ||||||
|
||||||
>>> a = np.array([[0, 0, 0], [1, 1, 1], [2, 2, 2]]) | ||||||
>>> b = np.array([[0, 0, 1]]) | ||||||
>>> similarity_search(a, b) | ||||||
[[[0, 0, 0], 1.0]] | ||||||
>>> a = np.array([[0, 0, 0], [1, 1, 1], [2, 2, 2]]) | ||||||
>>> b = np.array([[0, 0, 0], [0, 0, 1]]) | ||||||
>>> similarity_search(a, b) | ||||||
[[[0, 0, 0], 0.0], [[0, 0, 0], 1.0]] | ||||||
""" | ||||||
|
||||||
if dataset.ndim != value.ndim: | ||||||
raise TypeError( | ||||||
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
"Wrong input data's dimensions... dataset : ", | ||||||
dataset.ndim, | ||||||
", value : ", | ||||||
value.ndim, | ||||||
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
) | ||||||
|
||||||
try: | ||||||
if dataset.shape[1] != value.shape[1]: | ||||||
raise TypeError( | ||||||
"Wrong input data's shape... dataset : ", | ||||||
dataset.shape[1], | ||||||
", value : ", | ||||||
value.shape[1], | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. f-string There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Done! |
||||||
) | ||||||
except IndexError: | ||||||
if (dataset.ndim == value.ndim) != 1: | ||||||
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
raise TypeError("Wrong type") | ||||||
|
||||||
if dataset.dtype != value.dtype: | ||||||
raise TypeError( | ||||||
"Input data have different datatype... dataset : ", | ||||||
dataset.dtype, | ||||||
", value : ", | ||||||
value.dtype, | ||||||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. f-string |
||||||
) | ||||||
|
||||||
answer = [] | ||||||
|
||||||
for index in range(len(value)): | ||||||
cclauss marked this conversation as resolved.
Show resolved
Hide resolved
|
||||||
dist = euclidean(value[index], dataset[0]) | ||||||
vector = dataset[0].tolist() | ||||||
|
||||||
for index2 in range(1, len(dataset)): | ||||||
temp_dist = euclidean(value[index], dataset[index2]) | ||||||
|
||||||
if dist > temp_dist: | ||||||
dist = temp_dist | ||||||
vector = dataset[index2].tolist() | ||||||
|
||||||
answer.append([vector, dist]) | ||||||
|
||||||
return answer | ||||||
|
||||||
|
||||||
if __name__ == "__main__": | ||||||
import doctest | ||||||
|
||||||
doctest.testmod() |
Uh oh!
There was an error while loading. Please reload this page.