Skip to content

Improve Project Euler problem 145 solution 1 #6259

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions DIRECTORY.md
Original file line number Diff line number Diff line change
Expand Up @@ -444,6 +444,7 @@
* [Scoring Functions](machine_learning/scoring_functions.py)
* [Sequential Minimum Optimization](machine_learning/sequential_minimum_optimization.py)
* [Similarity Search](machine_learning/similarity_search.py)
* [Support Vector Machines](machine_learning/support_vector_machines.py)
* [Word Frequency Functions](machine_learning/word_frequency_functions.py)

## Maths
Expand Down Expand Up @@ -500,6 +501,7 @@
* [Gaussian](maths/gaussian.py)
* [Greatest Common Divisor](maths/greatest_common_divisor.py)
* [Greedy Coin Change](maths/greedy_coin_change.py)
* [Hamming Numbers](maths/hamming_numbers.py)
* [Hardy Ramanujanalgo](maths/hardy_ramanujanalgo.py)
* [Integration By Simpson Approx](maths/integration_by_simpson_approx.py)
* [Is Ip V4 Address Valid](maths/is_ip_v4_address_valid.py)
Expand Down Expand Up @@ -938,6 +940,7 @@
* [Bogo Sort](sorts/bogo_sort.py)
* [Bubble Sort](sorts/bubble_sort.py)
* [Bucket Sort](sorts/bucket_sort.py)
* [Circle Sort](sorts/circle_sort.py)
* [Cocktail Shaker Sort](sorts/cocktail_shaker_sort.py)
* [Comb Sort](sorts/comb_sort.py)
* [Counting Sort](sorts/counting_sort.py)
Expand Down
90 changes: 64 additions & 26 deletions project_euler/problem_145/sol1.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
"""
Project Euler problem 145: https://projecteuler.net/problem=145
Author: Vineet Rao
Author: Vineet Rao, Maxim Smolskiy
Problem statement:

Some positive integers n have the property that the sum [ n + reverse(n) ]
Expand All @@ -13,44 +13,82 @@

How many reversible numbers are there below one-billion (10^9)?
"""
EVEN_DIGITS = [0, 2, 4, 6, 8]
ODD_DIGITS = [1, 3, 5, 7, 9]


def odd_digits(num: int) -> bool:
def reversible_numbers(
remaining_length: int, remainder: int, digits: list[int], length: int
) -> int:
"""
Check if the number passed as argument has only odd digits.
>>> odd_digits(123)
False
>>> odd_digits(135797531)
True
Count the number of reversible numbers of given length.
Iterate over possible digits considering parity of current sum remainder.
>>> reversible_numbers(1, 0, [0], 1)
0
>>> reversible_numbers(2, 0, [0] * 2, 2)
20
>>> reversible_numbers(3, 0, [0] * 3, 3)
100
"""
while num > 0:
digit = num % 10
if digit % 2 == 0:
return False
num //= 10
return True
if remaining_length == 0:
if digits[0] == 0 or digits[-1] == 0:
return 0

for i in range(length // 2 - 1, -1, -1):
remainder += digits[i] + digits[length - i - 1]

def solution(max_num: int = 1_000_000_000) -> int:
if remainder % 2 == 0:
return 0

remainder //= 10

return 1

if remaining_length == 1:
if remainder % 2 == 0:
return 0

result = 0
for digit in range(10):
digits[length // 2] = digit
result += reversible_numbers(
0, (remainder + 2 * digit) // 10, digits, length
)
return result

result = 0
for digit1 in range(10):
digits[(length + remaining_length) // 2 - 1] = digit1

if (remainder + digit1) % 2 == 0:
other_parity_digits = ODD_DIGITS
else:
other_parity_digits = EVEN_DIGITS

for digit2 in other_parity_digits:
digits[(length - remaining_length) // 2] = digit2
result += reversible_numbers(
remaining_length - 2,
(remainder + digit1 + digit2) // 10,
digits,
length,
)
return result


def solution(max_power: int = 9) -> int:
"""
To evaluate the solution, use solution()
>>> solution(1000)
>>> solution(3)
120
>>> solution(1_000_000)
>>> solution(6)
18720
>>> solution(10_000_000)
>>> solution(7)
68720
"""
result = 0
# All single digit numbers reverse to themselves, so their sums are even
# Therefore at least one digit in their sum is even
# Last digit cannot be 0, else it causes leading zeros in reverse
for num in range(11, max_num):
if num % 10 == 0:
continue
num_sum = num + int(str(num)[::-1])
num_is_reversible = odd_digits(num_sum)
result += 1 if num_is_reversible else 0
for length in range(1, max_power + 1):
result += reversible_numbers(length, 0, [0] * length, length)
return result


Expand Down