|
| 1 | +//! This module provides functionality for generating all possible colorings of a undirected (or directed) graph |
| 2 | +//! given a certain number of colors. It includes the GraphColoring struct and methods |
| 3 | +//! for validating color assignments and finding all valid colorings. |
| 4 | +
|
| 5 | +/// Represents potential errors when coloring on an adjacency matrix. |
| 6 | +#[derive(Debug, PartialEq, Eq)] |
| 7 | +pub enum GraphColoringError { |
| 8 | + // Indicates that the adjacency matrix is empty |
| 9 | + EmptyAdjacencyMatrix, |
| 10 | + // Indicates that the adjacency matrix is not squared |
| 11 | + ImproperAdjacencyMatrix, |
| 12 | +} |
| 13 | + |
| 14 | +/// Generates all possible valid colorings of a graph. |
| 15 | +/// |
| 16 | +/// # Arguments |
| 17 | +/// |
| 18 | +/// * `adjacency_matrix` - A 2D vector representing the adjacency matrix of the graph. |
| 19 | +/// * `num_colors` - The number of colors available for coloring the graph. |
| 20 | +/// |
| 21 | +/// # Returns |
| 22 | +/// |
| 23 | +/// * A `Result` containing an `Option` with a vector of solutions or a `GraphColoringError` if |
| 24 | +/// there is an issue with the matrix. |
| 25 | +pub fn generate_colorings( |
| 26 | + adjacency_matrix: Vec<Vec<bool>>, |
| 27 | + num_colors: usize, |
| 28 | +) -> Result<Option<Vec<Vec<usize>>>, GraphColoringError> { |
| 29 | + GraphColoring::new(adjacency_matrix)?.find_solutions(num_colors) |
| 30 | +} |
| 31 | + |
| 32 | +/// A struct representing a graph coloring problem. |
| 33 | +struct GraphColoring { |
| 34 | + // The adjacency matrix of the graph |
| 35 | + adjacency_matrix: Vec<Vec<bool>>, |
| 36 | + // The current colors assigned to each vertex |
| 37 | + vertex_colors: Vec<usize>, |
| 38 | + // Vector of all valid color assignments for the vertices found during the search |
| 39 | + solutions: Vec<Vec<usize>>, |
| 40 | +} |
| 41 | + |
| 42 | +impl GraphColoring { |
| 43 | + /// Creates a new GraphColoring instance. |
| 44 | + /// |
| 45 | + /// # Arguments |
| 46 | + /// |
| 47 | + /// * `adjacency_matrix` - A 2D vector representing the adjacency matrix of the graph. |
| 48 | + /// |
| 49 | + /// # Returns |
| 50 | + /// |
| 51 | + /// * A new instance of GraphColoring or a `GraphColoringError` if the matrix is empty or non-square. |
| 52 | + fn new(adjacency_matrix: Vec<Vec<bool>>) -> Result<Self, GraphColoringError> { |
| 53 | + let num_vertices = adjacency_matrix.len(); |
| 54 | + |
| 55 | + // Check if the adjacency matrix is empty |
| 56 | + if num_vertices == 0 { |
| 57 | + return Err(GraphColoringError::EmptyAdjacencyMatrix); |
| 58 | + } |
| 59 | + |
| 60 | + // Check if the adjacency matrix is square |
| 61 | + if adjacency_matrix.iter().any(|row| row.len() != num_vertices) { |
| 62 | + return Err(GraphColoringError::ImproperAdjacencyMatrix); |
| 63 | + } |
| 64 | + |
| 65 | + Ok(GraphColoring { |
| 66 | + adjacency_matrix, |
| 67 | + vertex_colors: vec![usize::MAX; num_vertices], |
| 68 | + solutions: Vec::new(), |
| 69 | + }) |
| 70 | + } |
| 71 | + |
| 72 | + /// Returns the number of vertices in the graph. |
| 73 | + fn num_vertices(&self) -> usize { |
| 74 | + self.adjacency_matrix.len() |
| 75 | + } |
| 76 | + |
| 77 | + /// Checks if a given color can be assigned to a vertex without causing a conflict. |
| 78 | + /// |
| 79 | + /// # Arguments |
| 80 | + /// |
| 81 | + /// * `vertex` - The index of the vertex to be colored. |
| 82 | + /// * `color` - The color to be assigned to the vertex. |
| 83 | + /// |
| 84 | + /// # Returns |
| 85 | + /// |
| 86 | + /// * `true` if the color can be assigned to the vertex, `false` otherwise. |
| 87 | + fn is_color_valid(&self, vertex: usize, color: usize) -> bool { |
| 88 | + for neighbor in 0..self.num_vertices() { |
| 89 | + // Check outgoing edges from vertex and incoming edges to vertex |
| 90 | + if (self.adjacency_matrix[vertex][neighbor] || self.adjacency_matrix[neighbor][vertex]) |
| 91 | + && self.vertex_colors[neighbor] == color |
| 92 | + { |
| 93 | + return false; |
| 94 | + } |
| 95 | + } |
| 96 | + true |
| 97 | + } |
| 98 | + |
| 99 | + /// Recursively finds all valid colorings for the graph. |
| 100 | + /// |
| 101 | + /// # Arguments |
| 102 | + /// |
| 103 | + /// * `vertex` - The current vertex to be colored. |
| 104 | + /// * `num_colors` - The number of colors available for coloring the graph. |
| 105 | + fn find_colorings(&mut self, vertex: usize, num_colors: usize) { |
| 106 | + if vertex == self.num_vertices() { |
| 107 | + self.solutions.push(self.vertex_colors.clone()); |
| 108 | + return; |
| 109 | + } |
| 110 | + |
| 111 | + for color in 0..num_colors { |
| 112 | + if self.is_color_valid(vertex, color) { |
| 113 | + self.vertex_colors[vertex] = color; |
| 114 | + self.find_colorings(vertex + 1, num_colors); |
| 115 | + self.vertex_colors[vertex] = usize::MAX; |
| 116 | + } |
| 117 | + } |
| 118 | + } |
| 119 | + |
| 120 | + /// Finds all solutions for the graph coloring problem. |
| 121 | + /// |
| 122 | + /// # Arguments |
| 123 | + /// |
| 124 | + /// * `num_colors` - The number of colors available for coloring the graph. |
| 125 | + /// |
| 126 | + /// # Returns |
| 127 | + /// |
| 128 | + /// * A `Result` containing an `Option` with a vector of solutions or a `GraphColoringError`. |
| 129 | + fn find_solutions( |
| 130 | + &mut self, |
| 131 | + num_colors: usize, |
| 132 | + ) -> Result<Option<Vec<Vec<usize>>>, GraphColoringError> { |
| 133 | + self.find_colorings(0, num_colors); |
| 134 | + if self.solutions.is_empty() { |
| 135 | + Ok(None) |
| 136 | + } else { |
| 137 | + Ok(Some(std::mem::take(&mut self.solutions))) |
| 138 | + } |
| 139 | + } |
| 140 | +} |
| 141 | + |
| 142 | +#[cfg(test)] |
| 143 | +mod tests { |
| 144 | + use super::*; |
| 145 | + |
| 146 | + macro_rules! test_graph_coloring { |
| 147 | + ($($name:ident: $test_case:expr,)*) => { |
| 148 | + $( |
| 149 | + #[test] |
| 150 | + fn $name() { |
| 151 | + let (adjacency_matrix, num_colors, expected) = $test_case; |
| 152 | + let actual = generate_colorings(adjacency_matrix, num_colors); |
| 153 | + assert_eq!(actual, expected); |
| 154 | + } |
| 155 | + )* |
| 156 | + }; |
| 157 | + } |
| 158 | + |
| 159 | + test_graph_coloring! { |
| 160 | + test_complete_graph_with_3_colors: ( |
| 161 | + vec![ |
| 162 | + vec![false, true, true, true], |
| 163 | + vec![true, false, true, false], |
| 164 | + vec![true, true, false, true], |
| 165 | + vec![true, false, true, false], |
| 166 | + ], |
| 167 | + 3, |
| 168 | + Ok(Some(vec![ |
| 169 | + vec![0, 1, 2, 1], |
| 170 | + vec![0, 2, 1, 2], |
| 171 | + vec![1, 0, 2, 0], |
| 172 | + vec![1, 2, 0, 2], |
| 173 | + vec![2, 0, 1, 0], |
| 174 | + vec![2, 1, 0, 1], |
| 175 | + ])) |
| 176 | + ), |
| 177 | + test_linear_graph_with_2_colors: ( |
| 178 | + vec![ |
| 179 | + vec![false, true, false, false], |
| 180 | + vec![true, false, true, false], |
| 181 | + vec![false, true, false, true], |
| 182 | + vec![false, false, true, false], |
| 183 | + ], |
| 184 | + 2, |
| 185 | + Ok(Some(vec![ |
| 186 | + vec![0, 1, 0, 1], |
| 187 | + vec![1, 0, 1, 0], |
| 188 | + ])) |
| 189 | + ), |
| 190 | + test_incomplete_graph_with_insufficient_colors: ( |
| 191 | + vec![ |
| 192 | + vec![false, true, true], |
| 193 | + vec![true, false, true], |
| 194 | + vec![true, true, false], |
| 195 | + ], |
| 196 | + 1, |
| 197 | + Ok(None::<Vec<Vec<usize>>>) |
| 198 | + ), |
| 199 | + test_empty_graph: ( |
| 200 | + vec![], |
| 201 | + 1, |
| 202 | + Err(GraphColoringError::EmptyAdjacencyMatrix) |
| 203 | + ), |
| 204 | + test_non_square_matrix: ( |
| 205 | + vec![ |
| 206 | + vec![false, true, true], |
| 207 | + vec![true, false, true], |
| 208 | + ], |
| 209 | + 3, |
| 210 | + Err(GraphColoringError::ImproperAdjacencyMatrix) |
| 211 | + ), |
| 212 | + test_single_vertex_graph: ( |
| 213 | + vec![ |
| 214 | + vec![false], |
| 215 | + ], |
| 216 | + 1, |
| 217 | + Ok(Some(vec![ |
| 218 | + vec![0], |
| 219 | + ])) |
| 220 | + ), |
| 221 | + test_bipartite_graph_with_2_colors: ( |
| 222 | + vec![ |
| 223 | + vec![false, true, false, true], |
| 224 | + vec![true, false, true, false], |
| 225 | + vec![false, true, false, true], |
| 226 | + vec![true, false, true, false], |
| 227 | + ], |
| 228 | + 2, |
| 229 | + Ok(Some(vec![ |
| 230 | + vec![0, 1, 0, 1], |
| 231 | + vec![1, 0, 1, 0], |
| 232 | + ])) |
| 233 | + ), |
| 234 | + test_large_graph_with_3_colors: ( |
| 235 | + vec![ |
| 236 | + vec![false, true, true, false, true, true, false, true, true, false], |
| 237 | + vec![true, false, true, true, false, true, true, false, true, true], |
| 238 | + vec![true, true, false, true, true, false, true, true, false, true], |
| 239 | + vec![false, true, true, false, true, true, false, true, true, false], |
| 240 | + vec![true, false, true, true, false, true, true, false, true, true], |
| 241 | + vec![true, true, false, true, true, false, true, true, false, true], |
| 242 | + vec![false, true, true, false, true, true, false, true, true, false], |
| 243 | + vec![true, false, true, true, false, true, true, false, true, true], |
| 244 | + vec![true, true, false, true, true, false, true, true, false, true], |
| 245 | + vec![false, true, true, false, true, true, false, true, true, false], |
| 246 | + ], |
| 247 | + 3, |
| 248 | + Ok(Some(vec![ |
| 249 | + vec![0, 1, 2, 0, 1, 2, 0, 1, 2, 0], |
| 250 | + vec![0, 2, 1, 0, 2, 1, 0, 2, 1, 0], |
| 251 | + vec![1, 0, 2, 1, 0, 2, 1, 0, 2, 1], |
| 252 | + vec![1, 2, 0, 1, 2, 0, 1, 2, 0, 1], |
| 253 | + vec![2, 0, 1, 2, 0, 1, 2, 0, 1, 2], |
| 254 | + vec![2, 1, 0, 2, 1, 0, 2, 1, 0, 2], |
| 255 | + ])) |
| 256 | + ), |
| 257 | + test_disconnected_graph: ( |
| 258 | + vec![ |
| 259 | + vec![false, false, false], |
| 260 | + vec![false, false, false], |
| 261 | + vec![false, false, false], |
| 262 | + ], |
| 263 | + 2, |
| 264 | + Ok(Some(vec![ |
| 265 | + vec![0, 0, 0], |
| 266 | + vec![0, 0, 1], |
| 267 | + vec![0, 1, 0], |
| 268 | + vec![0, 1, 1], |
| 269 | + vec![1, 0, 0], |
| 270 | + vec![1, 0, 1], |
| 271 | + vec![1, 1, 0], |
| 272 | + vec![1, 1, 1], |
| 273 | + ])) |
| 274 | + ), |
| 275 | + test_no_valid_coloring: ( |
| 276 | + vec![ |
| 277 | + vec![false, true, true], |
| 278 | + vec![true, false, true], |
| 279 | + vec![true, true, false], |
| 280 | + ], |
| 281 | + 2, |
| 282 | + Ok(None::<Vec<Vec<usize>>>) |
| 283 | + ), |
| 284 | + test_more_colors_than_nodes: ( |
| 285 | + vec![ |
| 286 | + vec![true, true], |
| 287 | + vec![true, true], |
| 288 | + ], |
| 289 | + 3, |
| 290 | + Ok(Some(vec![ |
| 291 | + vec![0, 1], |
| 292 | + vec![0, 2], |
| 293 | + vec![1, 0], |
| 294 | + vec![1, 2], |
| 295 | + vec![2, 0], |
| 296 | + vec![2, 1], |
| 297 | + ])) |
| 298 | + ), |
| 299 | + test_no_coloring_with_zero_colors: ( |
| 300 | + vec![ |
| 301 | + vec![true], |
| 302 | + ], |
| 303 | + 0, |
| 304 | + Ok(None::<Vec<Vec<usize>>>) |
| 305 | + ), |
| 306 | + test_complete_graph_with_3_vertices_and_3_colors: ( |
| 307 | + vec![ |
| 308 | + vec![false, true, true], |
| 309 | + vec![true, false, true], |
| 310 | + vec![true, true, false], |
| 311 | + ], |
| 312 | + 3, |
| 313 | + Ok(Some(vec![ |
| 314 | + vec![0, 1, 2], |
| 315 | + vec![0, 2, 1], |
| 316 | + vec![1, 0, 2], |
| 317 | + vec![1, 2, 0], |
| 318 | + vec![2, 0, 1], |
| 319 | + vec![2, 1, 0], |
| 320 | + ])) |
| 321 | + ), |
| 322 | + test_directed_graph_with_3_colors: ( |
| 323 | + vec![ |
| 324 | + vec![false, true, false, true], |
| 325 | + vec![false, false, true, false], |
| 326 | + vec![true, false, false, true], |
| 327 | + vec![true, false, false, false], |
| 328 | + ], |
| 329 | + 3, |
| 330 | + Ok(Some(vec![ |
| 331 | + vec![0, 1, 2, 1], |
| 332 | + vec![0, 2, 1, 2], |
| 333 | + vec![1, 0, 2, 0], |
| 334 | + vec![1, 2, 0, 2], |
| 335 | + vec![2, 0, 1, 0], |
| 336 | + vec![2, 1, 0, 1], |
| 337 | + ])) |
| 338 | + ), |
| 339 | + test_directed_graph_no_valid_coloring: ( |
| 340 | + vec![ |
| 341 | + vec![false, true, false, true], |
| 342 | + vec![false, false, true, true], |
| 343 | + vec![true, false, false, true], |
| 344 | + vec![true, false, false, false], |
| 345 | + ], |
| 346 | + 3, |
| 347 | + Ok(None::<Vec<Vec<usize>>>) |
| 348 | + ), |
| 349 | + test_large_directed_graph_with_3_colors: ( |
| 350 | + vec![ |
| 351 | + vec![false, true, false, false, true, false, false, true, false, false], |
| 352 | + vec![false, false, true, false, false, true, false, false, true, false], |
| 353 | + vec![false, false, false, true, false, false, true, false, false, true], |
| 354 | + vec![true, false, false, false, true, false, false, true, false, false], |
| 355 | + vec![false, true, false, false, false, true, false, false, true, false], |
| 356 | + vec![false, false, true, false, false, false, true, false, false, true], |
| 357 | + vec![true, false, false, false, true, false, false, true, false, false], |
| 358 | + vec![false, true, false, false, false, true, false, false, true, false], |
| 359 | + vec![false, false, true, false, false, false, true, false, false, true], |
| 360 | + vec![true, false, false, false, true, false, false, true, false, false], |
| 361 | + ], |
| 362 | + 3, |
| 363 | + Ok(Some(vec![ |
| 364 | + vec![0, 1, 2, 1, 2, 0, 1, 2, 0, 1], |
| 365 | + vec![0, 2, 1, 2, 1, 0, 2, 1, 0, 2], |
| 366 | + vec![1, 0, 2, 0, 2, 1, 0, 2, 1, 0], |
| 367 | + vec![1, 2, 0, 2, 0, 1, 2, 0, 1, 2], |
| 368 | + vec![2, 0, 1, 0, 1, 2, 0, 1, 2, 0], |
| 369 | + vec![2, 1, 0, 1, 0, 2, 1, 0, 2, 1] |
| 370 | + ])) |
| 371 | + ), |
| 372 | + } |
| 373 | +} |
0 commit comments