Skip to content

Jupyter notebooks for practicing Python data analysis and visualization with Matplotlib, NumPy, Pandas, SciPy, Seaborn, Keras, TensorFlow, and PyTorch.

License

Notifications You must be signed in to change notification settings

YasinRezvani/Hands_On_Machine_Learning_and_Deep_Learning_with_Python

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

Hands_On_Machine_Learning_and_Deep_Learning_with_Python

This project was conducted under the supervision of Dr. Mansoor Fateh at CVLab SHUT, focusing on deep learning and computer vision research. The work utilized Python along with key libraries including NumPy, Pandas, Matplotlib, and Seaborn for data analysis and visualization, as well as Keras, TensorFlow, and PyTorch for implementing and training deep learning models on standard datasets (MNIST and CIFAR-10). The research aimed to develop practical skills in building and optimizing neural networks while adhering to academic methodologies.

Demo πŸŽ‰

πŸŽ† Loading_The_MNIST_Dataset πŸŽ†

Loading_The_MNIST_Dataset.mp4

🍁 Playing_With_Numpy_Library 🍁

Playing_With_Numpy_Library.mp4

πŸ’Ž NumPy_Exercises_From_Udemy_Course πŸ’Ž

NumPy_Exercises_From_Udemy_Course.mp4

✌️ Playing_With_Pandas_Library ✌️

Playing_With_Pandas_Library.mp4

πŸ’ͺ Pandas_Exercises_From_Udemy_Course πŸ’ͺ

Pandas_Exercises_From_Udemy_Course.mp4

πŸ’– Playing_With_Scipy_Library πŸ’–

Playing_With_Scipy_Library.mp4

✈️ Playing_With_Matplotlib_Library ✈️

Playing_With_Matplotlib_Library.mp4

πŸš€ Playing_With_Seaborn_Library πŸš€

Playing_With_Seaborn_Library.mp4

πŸŽ„ Training_a_Digit_Recognition_Model_Using_Keras_on_the_MNIST_Dataset πŸŽ„

Training_a_Digit_Recognition_Model_Using_Keras_on_the_MNIST_Dataset.mp4

πŸ“ˆ Training_a_Recognition_Model_Using_Keras_on_the_CIFAR_10_Dataset πŸ“ˆ

Training_a_Recognition_Model_Using_Keras_on_the_CIFAR_10_Dataset.mp4

♠️ Training_a_Convolution_Dense_Layer_With_Recognition_Model_Using_Keras_on_the_CIFAR_10_Dataset ♠️

Training_a_Convolution_Dense_Layer_With_Recognition_Model_Using_Keras_on_the_CIFAR_10_Dataset.mp4

πŸ—½ How_to_Define_Functional_And_Sequential_Keras_Models πŸ—½

How_to_Define_Functional_And_Sequential_Keras_Models.mp4

πŸ’£ Training_a_Digit_Recognition_Model_Using_Pytorch_Library_on_the_MNIST_Dataset πŸ’£

Training_a_Digit_Recognition_Model_Using_Pytorch_Library_on_the_MNIST_Dataset.mp4