+ "Linear regression with appropriate controls for trend, seasonality, and recent behavior, remains a common method for forecasting stable time-series with reasonable volatility. This notebook will build a linear model to forecast weekly output for US gasoline products starting in 1991 to 2005. It will focus almost exclusively on the application. For a more in-depth treatment on forecasting in general, see [Forecasting: Principles & Practice](https://robjhyndman.com/uwafiles/fpp-notes.pdf). In addition, because our dataset is a single time-series, we'll stick with SageMaker's Linear Learner algorithm. If we had multiple, related time-series, we would use SageMaker's DeepAR algorithm, which is specifically designed for forecasting. See the [DeepAR Notebook](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/deepar_synthetic/deepar_synthetic.ipynb) for more detail.\n",
0 commit comments