|
| 1 | +# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. |
| 2 | +# |
| 3 | +# Licensed under the Apache License, Version 2.0 (the "License"). |
| 4 | +# You may not use this file except in compliance with the License. |
| 5 | +# A copy of the License is located at |
| 6 | +# |
| 7 | +# https://aws.amazon.com/apache-2-0/ |
| 8 | +# |
| 9 | +# or in the "license" file accompanying this file. This file is distributed |
| 10 | +# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either |
| 11 | +# express or implied. See the License for the specific language governing |
| 12 | +# permissions and limitations under the License. |
| 13 | + |
| 14 | +from __future__ import absolute_import |
| 15 | +from __future__ import division |
| 16 | +from __future__ import print_function |
| 17 | + |
| 18 | +import os |
| 19 | + |
| 20 | +import tensorflow as tf |
| 21 | +from tensorflow.python.keras.layers import InputLayer, Conv2D, Activation, MaxPooling2D, Dropout, Flatten, Dense |
| 22 | +from tensorflow.python.keras.models import Sequential |
| 23 | +from tensorflow.python.keras.optimizers import RMSprop |
| 24 | +from tensorflow.python.saved_model.signature_constants import PREDICT_INPUTS |
| 25 | + |
| 26 | +HEIGHT = 32 |
| 27 | +WIDTH = 32 |
| 28 | +DEPTH = 3 |
| 29 | +NUM_CLASSES = 10 |
| 30 | +NUM_DATA_BATCHES = 5 |
| 31 | +NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN = 10000 * NUM_DATA_BATCHES |
| 32 | +BATCH_SIZE = 128 |
| 33 | + |
| 34 | + |
| 35 | +def keras_model_fn(hyperparameters): |
| 36 | + """keras_model_fn receives hyperparameters from the training job and returns a compiled keras model. |
| 37 | + The model will be transformed into a TensorFlow Estimator before training and it will be saved in a |
| 38 | + TensorFlow Serving SavedModel at the end of training. |
| 39 | +
|
| 40 | + Args: |
| 41 | + hyperparameters: The hyperparameters passed to the SageMaker TrainingJob that runs your TensorFlow |
| 42 | + training script. |
| 43 | + Returns: A compiled Keras model |
| 44 | + """ |
| 45 | + model = Sequential() |
| 46 | + |
| 47 | + # TensorFlow Serving default prediction input tensor name is PREDICT_INPUTS. |
| 48 | + # We must conform to this naming scheme. |
| 49 | + model.add(InputLayer(input_shape=(HEIGHT, WIDTH, DEPTH), name=PREDICT_INPUTS)) |
| 50 | + model.add(Conv2D(32, (3, 3), padding='same')) |
| 51 | + model.add(Activation('relu')) |
| 52 | + model.add(Conv2D(32, (3, 3))) |
| 53 | + model.add(Activation('relu')) |
| 54 | + model.add(MaxPooling2D(pool_size=(2, 2))) |
| 55 | + model.add(Dropout(0.25)) |
| 56 | + |
| 57 | + model.add(Conv2D(64, (3, 3), padding='same')) |
| 58 | + model.add(Activation('relu')) |
| 59 | + model.add(Conv2D(64, (3, 3))) |
| 60 | + model.add(Activation('relu')) |
| 61 | + model.add(MaxPooling2D(pool_size=(2, 2))) |
| 62 | + model.add(Dropout(0.25)) |
| 63 | + |
| 64 | + model.add(Flatten()) |
| 65 | + model.add(Dense(512)) |
| 66 | + model.add(Activation('relu')) |
| 67 | + model.add(Dropout(0.5)) |
| 68 | + model.add(Dense(NUM_CLASSES)) |
| 69 | + model.add(Activation('softmax')) |
| 70 | + |
| 71 | + _model = tf.keras.Model(inputs=model.input, outputs=model.output) |
| 72 | + |
| 73 | + opt = RMSprop(lr=hyperparameters['learning_rate'], decay=hyperparameters['decay']) |
| 74 | + |
| 75 | + _model.compile(loss='categorical_crossentropy', |
| 76 | + optimizer=opt, |
| 77 | + metrics=['accuracy']) |
| 78 | + |
| 79 | + return _model |
| 80 | + |
| 81 | + |
| 82 | +def serving_input_fn(hyperparameters): |
| 83 | + """This function defines the placeholders that will be added to the model during serving. |
| 84 | + The function returns a tf.estimator.export.ServingInputReceiver object, which packages the |
| 85 | + placeholders and the resulting feature Tensors together. |
| 86 | + For more information: https://github.com/aws/sagemaker-python-sdk/blob/master/src/sagemaker/tensorflow/README.rst#creating-a-serving_input_fn |
| 87 | + |
| 88 | + Args: |
| 89 | + hyperparameters: The hyperparameters passed to SageMaker TrainingJob that runs your TensorFlow |
| 90 | + training script. |
| 91 | + Returns: ServingInputReceiver or fn that returns a ServingInputReceiver |
| 92 | + """ |
| 93 | + |
| 94 | + # Notice that the input placeholder has the same input shape as the Keras model input |
| 95 | + tensor = tf.placeholder(tf.float32, shape=[None, HEIGHT, WIDTH, DEPTH]) |
| 96 | + |
| 97 | + # The inputs key PREDICT_INPUTS matches the Keras InputLayer name |
| 98 | + inputs = {PREDICT_INPUTS: tensor} |
| 99 | + return tf.estimator.export.ServingInputReceiver(inputs, inputs) |
| 100 | + |
| 101 | + |
| 102 | +def train_input_fn(training_dir, hyperparameters): |
| 103 | + """Returns input function that would feed the model during training""" |
| 104 | + return _input(tf.estimator.ModeKeys.TRAIN, |
| 105 | + batch_size=BATCH_SIZE, data_dir=training_dir) |
| 106 | + |
| 107 | + |
| 108 | +def eval_input_fn(training_dir, hyperparameters): |
| 109 | + """Returns input function that would feed the model during evaluation""" |
| 110 | + return _input(tf.estimator.ModeKeys.EVAL, |
| 111 | + batch_size=BATCH_SIZE, data_dir=training_dir) |
| 112 | + |
| 113 | + |
| 114 | +def _input(mode, batch_size, data_dir): |
| 115 | + """Uses the tf.data input pipeline for CIFAR-10 dataset. |
| 116 | + Args: |
| 117 | + mode: Standard names for model modes (tf.estimators.ModeKeys). |
| 118 | + batch_size: The number of samples per batch of input requested. |
| 119 | + """ |
| 120 | + dataset = _record_dataset(_filenames(mode, data_dir)) |
| 121 | + |
| 122 | + # For training repeat forever. |
| 123 | + if mode == tf.estimator.ModeKeys.TRAIN: |
| 124 | + dataset = dataset.repeat() |
| 125 | + |
| 126 | + dataset = dataset.map(_dataset_parser) |
| 127 | + dataset.prefetch(2 * batch_size) |
| 128 | + |
| 129 | + # For training, preprocess the image and shuffle. |
| 130 | + if mode == tf.estimator.ModeKeys.TRAIN: |
| 131 | + dataset = dataset.map(_train_preprocess_fn) |
| 132 | + dataset.prefetch(2 * batch_size) |
| 133 | + |
| 134 | + # Ensure that the capacity is sufficiently large to provide good random |
| 135 | + # shuffling. |
| 136 | + buffer_size = int(NUM_EXAMPLES_PER_EPOCH_FOR_TRAIN * 0.4) + 3 * batch_size |
| 137 | + dataset = dataset.shuffle(buffer_size=buffer_size) |
| 138 | + |
| 139 | + # Subtract off the mean and divide by the variance of the pixels. |
| 140 | + dataset = dataset.map( |
| 141 | + lambda image, label: (tf.image.per_image_standardization(image), label)) |
| 142 | + dataset.prefetch(2 * batch_size) |
| 143 | + |
| 144 | + # Batch results by up to batch_size, and then fetch the tuple from the |
| 145 | + # iterator. |
| 146 | + iterator = dataset.batch(batch_size).make_one_shot_iterator() |
| 147 | + images, labels = iterator.get_next() |
| 148 | + |
| 149 | + # We must use the default input tensor name PREDICT_INPUTS |
| 150 | + return {PREDICT_INPUTS: images}, labels |
| 151 | + |
| 152 | + |
| 153 | +def _train_preprocess_fn(image, label): |
| 154 | + """Preprocess a single training image of layout [height, width, depth].""" |
| 155 | + # Resize the image to add four extra pixels on each side. |
| 156 | + image = tf.image.resize_image_with_crop_or_pad(image, HEIGHT + 8, WIDTH + 8) |
| 157 | + |
| 158 | + # Randomly crop a [HEIGHT, WIDTH] section of the image. |
| 159 | + image = tf.random_crop(image, [HEIGHT, WIDTH, DEPTH]) |
| 160 | + |
| 161 | + # Randomly flip the image horizontally. |
| 162 | + image = tf.image.random_flip_left_right(image) |
| 163 | + |
| 164 | + return image, label |
| 165 | + |
| 166 | + |
| 167 | +def _dataset_parser(value): |
| 168 | + """Parse a CIFAR-10 record from value.""" |
| 169 | + # Every record consists of a label followed by the image, with a fixed number |
| 170 | + # of bytes for each. |
| 171 | + label_bytes = 1 |
| 172 | + image_bytes = HEIGHT * WIDTH * DEPTH |
| 173 | + record_bytes = label_bytes + image_bytes |
| 174 | + |
| 175 | + # Convert from a string to a vector of uint8 that is record_bytes long. |
| 176 | + raw_record = tf.decode_raw(value, tf.uint8) |
| 177 | + |
| 178 | + # The first byte represents the label, which we convert from uint8 to int32. |
| 179 | + label = tf.cast(raw_record[0], tf.int32) |
| 180 | + |
| 181 | + # The remaining bytes after the label represent the image, which we reshape |
| 182 | + # from [depth * height * width] to [depth, height, width]. |
| 183 | + depth_major = tf.reshape(raw_record[label_bytes:record_bytes], |
| 184 | + [DEPTH, HEIGHT, WIDTH]) |
| 185 | + |
| 186 | + # Convert from [depth, height, width] to [height, width, depth], and cast as |
| 187 | + # float32. |
| 188 | + image = tf.cast(tf.transpose(depth_major, [1, 2, 0]), tf.float32) |
| 189 | + |
| 190 | + return image, tf.one_hot(label, NUM_CLASSES) |
| 191 | + |
| 192 | + |
| 193 | +def _record_dataset(filenames): |
| 194 | + """Returns an input pipeline Dataset from `filenames`.""" |
| 195 | + record_bytes = HEIGHT * WIDTH * DEPTH + 1 |
| 196 | + return tf.data.FixedLengthRecordDataset(filenames, record_bytes) |
| 197 | + |
| 198 | + |
| 199 | +def _filenames(mode, data_dir): |
| 200 | + """Returns a list of filenames based on 'mode'.""" |
| 201 | + data_dir = os.path.join(data_dir, 'cifar-10-batches-bin') |
| 202 | + |
| 203 | + assert os.path.exists(data_dir), ('Run cifar10_download_and_extract.py first ' |
| 204 | + 'to download and extract the CIFAR-10 data.') |
| 205 | + |
| 206 | + if mode == tf.estimator.ModeKeys.TRAIN: |
| 207 | + return [ |
| 208 | + os.path.join(data_dir, 'data_batch_%d.bin' % i) |
| 209 | + for i in range(1, NUM_DATA_BATCHES + 1) |
| 210 | + ] |
| 211 | + elif mode == tf.estimator.ModeKeys.EVAL: |
| 212 | + return [os.path.join(data_dir, 'test_batch.bin')] |
| 213 | + else: |
| 214 | + raise ValueError('Invalid mode: %s' % mode) |
0 commit comments