Closed
Description
Description
- Details regarding the bug
Attempting to set a row when there is only one column panics. I've reproduced consistently with arrayfire-rust 3.7 and latest master - Did you build ArrayFire yourself or did you use the official installers
Installedcommunity/arrayfire 3.7.2-1
in Arch Linux - Which backend is experiencing this issue? (CPU, CUDA, OpenCL)
All - Do you have a workaround?
No - Can the bug be reproduced reliably on your system?
Yes - A clear and concise description of what you expected to happen.
Setting a single row should succeed if there is 1 column in the array - Run your executable with AF_TRACE=all and AF_PRINT_ERRORS=1 environment
variables set. - Screenshot or terminal output of the results from above run
Finished dev [unoptimized + debuginfo] target(s) in 0.38s
Running `target/debug/af_row_set`
[unified][1599322631][022537] [ ../src/api/unified/symbol_manager.cpp:140 ] Attempting: Default System Paths
[unified][1599322631][022537] [ ../src/api/unified/symbol_manager.cpp:144 ] Found: libafcpu.so.3
[unified][1599322631][022537] [ ../src/api/unified/symbol_manager.cpp:151 ] Device Count: 1.
[unified][1599322631][022537] [ ../src/api/unified/symbol_manager.cpp:140 ] Attempting: Default System Paths
[unified][1599322631][022537] [ ../src/api/unified/symbol_manager.cpp:144 ] Found: libafopencl.so.3
[platform][1599322631][022537] [ ../src/backend/common/DependencyModule.cpp:99 ] Attempting to load: libforge.so
[platform][1599322631][022537] [ ../src/backend/common/DependencyModule.cpp:102 ] Found: libforge.so
[platform][1599322631][022537] [ ../src/backend/opencl/device_manager.cpp:218 ] Found 2 OpenCL platforms
[platform][1599322631][022537] [ ../src/backend/opencl/device_manager.cpp:229 ] Found 1 devices on platform NVIDIA CUDA
[platform][1599322631][022537] [ ../src/backend/opencl/device_manager.cpp:233 ] Found device GeForce RTX 2080 on platform NVIDIA CUDA
[platform][1599322631][022537] [ ../src/backend/opencl/device_manager.cpp:229 ] Found 0 devices on platform Clover
[platform][1599322631][022537] [ ../src/backend/opencl/device_manager.cpp:240 ] Found 1 OpenCL devices
[platform][1599322632][022537] [ ../src/backend/opencl/device_manager.cpp:335 ] Default device: 0
[unified][1599322632][022537] [ ../src/api/unified/symbol_manager.cpp:151 ] Device Count: 1.
[unified][1599322632][022537] [ ../src/api/unified/symbol_manager.cpp:140 ] Attempting: Default System Paths
[unified][1599322632][022537] [ ../src/api/unified/symbol_manager.cpp:144 ] Found: libafcuda.so.3
[unified][1599322632][022537] [ ../src/api/unified/symbol_manager.cpp:151 ] Device Count: 1.
[unified][1599322632][022537] [ ../src/api/unified/symbol_manager.cpp:206 ] AF_DEFAULT_BACKEND: cuda
[platform][1599322632][022537] [ ../src/backend/common/DependencyModule.cpp:99 ] Attempting to load: libforge.so
[platform][1599322632][022537] [ ../src/backend/common/DependencyModule.cpp:102 ] Found: libforge.so
[platform][1599322632][022537] [ ../src/backend/cuda/device_manager.cpp:427 ] CUDA Driver supports up to CUDA 11.0 ArrayFire CUDA Runtime 11.0
[platform][1599322632][022537] [ ../src/backend/cuda/device_manager.cpp:495 ] Found 1 CUDA devices
[platform][1599322632][022537] [ ../src/backend/cuda/device_manager.cpp:517 ] Found device: GeForce RTX 2080 (7.79 GB | ~10107.4 GFLOPs | 46 SMs)
[platform][1599322632][022537] [ ../src/backend/cuda/device_manager.cpp:556 ] AF_CUDA_DEFAULT_DEVICE:
[platform][1599322632][022537] [ ../src/backend/cuda/device_manager.cpp:574 ] Default device: 0(GeForce RTX 2080)
ArrayFire v3.7.2 (CUDA, 64-bit Linux, build default)
Platform: CUDA Runtime 11.0, Driver: 450.66
[0] GeForce RTX 2080, 7980 MB, CUDA Compute 7.5
[5 3 1 1]
[mem][1599322632][022537] [ ../src/backend/cuda/memory.cpp:158 ] nativeAlloc: 1 KB 0x7fa4ea000000
[mem][1599322632][022537] [ ../src/backend/cuda/memory.cpp:158 ] nativeAlloc: 1 KB 0x7fa4ea000400
[jit][1599322632][022537] [ ../src/backend/cuda/compile_module.cpp:429 ] {18389128331537752529 : loaded from /home/ak/.arrayfire/KER18389128331537752529_CU_75_AF_37.cubin for GeForce RTX 2080 }
[jit][1599322632][022537] [ ../src/backend/cuda/compile_module.cpp:429 ] {11230367656483596278 : loaded from /home/ak/.arrayfire/KER11230367656483596278_CU_75_AF_37.cubin for GeForce RTX 2080 }
2.0000 2.0000 2.0000
2.0000 2.0000 2.0000
2.0000 2.0000 2.0000
2.0000 2.0000 2.0000
2.0000 2.0000 2.0000
[jit][1599322632][022537] [ ../src/backend/cuda/compile_module.cpp:429 ] {11856060716839361424 : loaded from /home/ak/.arrayfire/KER11856060716839361424_CU_75_AF_37.cubin for GeForce RTX 2080 }
[5 3 1 1]
[mem][1599322632][022537] [ ../src/backend/cuda/memory.cpp:158 ] nativeAlloc: 1 KB 0x7fa4ea000800
2.0000 2.0000 2.0000
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000
1.0000 1.0000 1.0000
2.0000 2.0000 2.0000
[5 2 1 1]
2.0000 2.0000
2.0000 2.0000
2.0000 2.0000
2.0000 2.0000
2.0000 2.0000
[5 2 1 1]
2.0000 2.0000
1.0000 1.0000
1.0000 1.0000
1.0000 1.0000
2.0000 2.0000
[5 1 1 1]
2.0000
2.0000
2.0000
2.0000
2.0000
In function af_err af_assign_seq(void**, af_array, unsigned int, const af_seq*, af_array)
In file src/api/c/assign.cpp:184
Invalid dimension for argument 0
Expected: (outDims.ndims() >= (dim_t)ndims)
0# 0x00007FA5283928EB in /usr/lib/libafcuda.so.3
1# 0x000055EB81FBC09E in target/debug/af_row_set
2# 0x000055EB81FBCD7F in target/debug/af_row_set
3# 0x000055EB81FBCE14 in target/debug/af_row_set
4# 0x000055EB81FBD34D in target/debug/af_row_set
5# 0x000055EB81FD3963 in target/debug/af_row_set
6# 0x000055EB81FBD317 in target/debug/af_row_set
7# 0x000055EB81FBCE6A in target/debug/af_row_set
8# __libc_start_main in /usr/lib/libc.so.6
9# 0x000055EB81FBB17E in target/debug/af_row_set
thread 'main' panicked at 'Error message: Size is incorrect
Last error: In function af_err af_assign_seq(void**, af_array, unsigned int, const af_seq*, af_array)
In file src/api/c/assign.cpp:184
Invalid dimension for argument 0
Expected: (outDims.ndims() >= (dim_t)ndims)
0# 0x00007FA5283928EB in /usr/lib/libafcuda.so.3
1# 0x000055EB81FBC09E in target/debug/af_row_set
2# 0x000055EB81FBCD7F in target/debug/af_row_set
3# 0x000055EB81FBCE14 in target/debug/af_row_set
4# 0x000055EB81FBD34D in target/debug/af_row_set
5# 0x000055EB81FD3963 in target/debug/af_row_set
6# 0x000055EB81FBD317 in target/debug/af_row_set
7# 0x000055EB81FBCE6A in target/debug/af_row_set
8# __libc_start_main in /usr/lib/libc.so.6
9# 0x000055EB81FBB17E in target/debug/af_row_set
', /home/ak/.cargo/git/checkouts/arrayfire-rust-78c6296114c4c65d/39ab7a5/src/core/error.rs:37:14
note: run with `RUST_BACKTRACE=1` environment variable to display a backtrace
Reproducible Code and/or Steps
use arrayfire::*;
fn pick_backend() {
let available = get_available_backends();
if available.contains(&Backend::CUDA) {
set_backend(Backend::CUDA);
} else if available.contains(&Backend::OPENCL) {
set_backend(Backend::OPENCL);
} else if available.contains(&Backend::CPU) {
set_backend(Backend::CPU);
} else {
panic!("unable to find a usable ArrayFire backend")
}
info();
}
// get the first row and set it back
fn get_and_set_row(num_columns: u64) {
let dims = Dim4::new(&[2, num_columns, 1, 1]);
let mut a = randu::<f32>(dims);
print(&a);
let r = row(&a, 0);
print(&r);
set_row(&mut a, &r, 0);
print(&a);
}
// code from example at http://arrayfire.org/arrayfire-rust/arrayfire/book/indexing.html#using-seq-objects-to-index-array
fn set_with_assign_seq(num_columns: u64) {
let mut a = constant(2.0 as f32, Dim4::new(&[5, num_columns, 1, 1]));
let b = constant(1.0 as f32, Dim4::new(&[3, num_columns, 1, 1]));
let seqs = &[Seq::new(1.0, 3.0, 1.0), Seq::default()];
print(&a);
assign_seq(&mut a, seqs, &b);
print(&a);
}
fn main() -> std::io::Result<()> {
pick_backend();
// works as expected
set_with_assign_seq(3);
set_with_assign_seq(2);
// panics
set_with_assign_seq(1);
// works as expected
get_and_set_row(2);
// panics
get_and_set_row(1);
Ok(())
}
System Information
Please provide the following information:
- ArrayFire version
3.7.2 - Devices installed on the system
- GeForce RTX 2080
- AMD Ryzen 7 2700X Eight-Core Processor
- (optional) Output from the af::info() function if applicable.
- Output from the following scripts:
name, memory.total [MiB], driver_version
GeForce RTX 2080, 7979 MiB, 450.66
rocm-smi not found.
$ clinfo
Number of platforms 2
Platform Name NVIDIA CUDA
Platform Vendor NVIDIA Corporation
Platform Version OpenCL 1.2 CUDA 11.0.228
Platform Profile FULL_PROFILE
Platform Extensions cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_fp64 cl_khr_byte_addressable_store cl_khr_icd cl_khr_gl_sharing cl_nv_compiler_options cl_nv_device_attribute_query cl_nv_pragma_unroll cl_nv_copy_opts cl_nv_create_buffer cl_khr_int64_base_atomics cl_khr_int64_extended_atomics
Platform Extensions function suffix NV
Platform Name Clover
Platform Vendor Mesa
Platform Version OpenCL 1.1 Mesa 20.1.6
Platform Profile FULL_PROFILE
Platform Extensions cl_khr_icd
Platform Extensions function suffix MESA
Platform Name NVIDIA CUDA
Number of devices 1
Device Name GeForce RTX 2080
Device Vendor NVIDIA Corporation
Device Vendor ID 0x10de
Device Version OpenCL 1.2 CUDA
Driver Version 450.66
Device OpenCL C Version OpenCL C 1.2
Device Type GPU
Device Topology (NV) PCI-E, 08:00.0
Device Profile FULL_PROFILE
Device Available Yes
Compiler Available Yes
Linker Available Yes
Max compute units 46
Max clock frequency 1800MHz
Compute Capability (NV) 7.5
Device Partition (core)
Max number of sub-devices 1
Supported partition types None
Supported affinity domains (n/a)
Max work item dimensions 3
Max work item sizes 1024x1024x64
Max work group size 1024
Preferred work group size multiple 32
Warp size (NV) 32
Preferred / native vector sizes
char 1 / 1
short 1 / 1
int 1 / 1
long 1 / 1
half 0 / 0 (n/a)
float 1 / 1
double 1 / 1 (cl_khr_fp64)
Half-precision Floating-point support (n/a)
Single-precision Floating-point support (core)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero Yes
Round to infinity Yes
IEEE754-2008 fused multiply-add Yes
Support is emulated in software No
Correctly-rounded divide and sqrt operations Yes
Double-precision Floating-point support (cl_khr_fp64)
Denormals Yes
Infinity and NANs Yes
Round to nearest Yes
Round to zero Yes
Round to infinity Yes
IEEE754-2008 fused multiply-add Yes
Support is emulated in software No
Address bits 64, Little-Endian
Global memory size 8366784512 (7.792GiB)
Error Correction support No
Max memory allocation 2091696128 (1.948GiB)
Unified memory for Host and Device No
Integrated memory (NV) No
Minimum alignment for any data type 128 bytes
Alignment of base address 4096 bits (512 bytes)
Global Memory cache type Read/Write
Global Memory cache size 1507328 (1.438MiB)
Global Memory cache line size 128 bytes
Image support Yes
Max number of samplers per kernel 32
Max size for 1D images from buffer 268435456 pixels
Max 1D or 2D image array size 2048 images
Max 2D image size 32768x32768 pixels
Max 3D image size 16384x16384x16384 pixels
Max number of read image args 256
Max number of write image args 32
Local memory type Local
Local memory size 49152 (48KiB)
Registers per block (NV) 65536
Max number of constant args 9
Max constant buffer size 65536 (64KiB)
Max size of kernel argument 4352 (4.25KiB)
Queue properties
Out-of-order execution Yes
Profiling Yes
Prefer user sync for interop No
Profiling timer resolution 1000ns
Execution capabilities
Run OpenCL kernels Yes
Run native kernels No
Kernel execution timeout (NV) Yes
Concurrent copy and kernel execution (NV) Yes
Number of async copy engines 3
printf() buffer size 1048576 (1024KiB)
Built-in kernels (n/a)
Device Extensions cl_khr_global_int32_base_atomics cl_khr_global_int32_extended_atomics cl_khr_local_int32_base_atomics cl_khr_local_int32_extended_atomics cl_khr_fp64 cl_khr_byte_addressable_store cl_khr_icd cl_khr_gl_sharing cl_nv_compiler_options cl_nv_device_attribute_query cl_nv_pragma_unroll cl_nv_copy_opts cl_nv_create_buffer cl_khr_int64_base_atomics cl_khr_int64_extended_atomics
Platform Name Clover
Number of devices 0
NULL platform behavior
clGetPlatformInfo(NULL, CL_PLATFORM_NAME, ...) No platform
clGetDeviceIDs(NULL, CL_DEVICE_TYPE_ALL, ...) No platform
clCreateContext(NULL, ...) [default] No platform
clCreateContext(NULL, ...) [other] Success [NV]
clCreateContextFromType(NULL, CL_DEVICE_TYPE_DEFAULT) No platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_CPU) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_GPU) No platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_ACCELERATOR) No devices found in platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_CUSTOM) Invalid device type for platform
clCreateContextFromType(NULL, CL_DEVICE_TYPE_ALL) No platform
Checklist
- Using the latest available ArrayFire release
- GPU drivers are up to date