Skip to content

Updated: DeepAR mention in Linear Time Series Notebook #157

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jan 10, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -33,7 +33,7 @@
"\n",
"Properly modeling time-series data takes a great deal of care. What's the right level of aggregation to model at? Too granular and the signal gets lost in the noise, too aggregate and important variation is missed. Also, what is the right cyclicality? Daily, weekly, monthly? Are there holiday peaks? How should we weight recent versus overall trends?\n",
"\n",
"Linear regression with appropriate controls for trend, seasonality, and recent behavior, remains a common method for forecasting stable time-series with reasonable volatility. This notebook will build a linear model to forecast weekly output for US gasoline products starting in 1991 to 2005. It will focus almost exclusively on the application. For a more in-depth treatment on forecasting in general, see [Forecasting: Principles & Practice](https://robjhyndman.com/uwafiles/fpp-notes.pdf).\n",
"Linear regression with appropriate controls for trend, seasonality, and recent behavior, remains a common method for forecasting stable time-series with reasonable volatility. This notebook will build a linear model to forecast weekly output for US gasoline products starting in 1991 to 2005. It will focus almost exclusively on the application. For a more in-depth treatment on forecasting in general, see [Forecasting: Principles & Practice](https://robjhyndman.com/uwafiles/fpp-notes.pdf). In addition, because our dataset is a single time-series, we'll stick with SageMaker's Linear Learner algorithm. If we had multiple, related time-series, we would use SageMaker's DeepAR algorithm, which is specifically designed for forecasting. See the [DeepAR Notebook](https://github.com/awslabs/amazon-sagemaker-examples/blob/master/introduction_to_amazon_algorithms/deepar_synthetic/deepar_synthetic.ipynb) for more detail.\n",
"\n",
"---\n",
"\n",
Expand Down