Skip to content

fix module api link #373

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Aug 20, 2018
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion sagemaker-python-sdk/mxnet_mnist/mxnet_mnist.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
"source": [
"# Training and hosting SageMaker Models using the Apache MXNet Module API\n",
"\n",
"The **SageMaker Python SDK** makes it easy to train and deploy MXNet models. In this example, we train a simple neural network using the Apache MXNet [Module API](https://mxnet.incubator.apache.org/api/python/module.html) and the MNIST dataset. The MNIST dataset is widely used for handwritten digit classification, and consists of 70,000 labeled 28x28 pixel grayscale images of hand-written digits. The dataset is split into 60,000 training images and 10,000 test images. There are 10 classes (one for each of the 10 digits). The task at hand is to train a model using the 60,000 training images and subsequently test its classification accuracy on the 10,000 test images.\n",
"The **SageMaker Python SDK** makes it easy to train and deploy MXNet models. In this example, we train a simple neural network using the Apache MXNet [Module API](https://mxnet.apache.org/api/python/module/module.html) and the MNIST dataset. The MNIST dataset is widely used for handwritten digit classification, and consists of 70,000 labeled 28x28 pixel grayscale images of hand-written digits. The dataset is split into 60,000 training images and 10,000 test images. There are 10 classes (one for each of the 10 digits). The task at hand is to train a model using the 60,000 training images and subsequently test its classification accuracy on the 10,000 test images.\n",
"\n",
"### Setup\n",
"\n",
Expand Down