@@ -49,14 +49,13 @@ def test_mnist(sagemaker_session, instance_type):
49
49
sagemaker_session = sagemaker_session ,
50
50
py_version = 'py3' ,
51
51
framework_version = TensorFlow .LATEST_VERSION ,
52
- metric_definitions = [{'Name' : 'train:global_steps' , 'Regex' : r'global_step\/sec:\s(.*)' }],
53
- base_job_name = unique_name_from_base ('test-tf-sm-mnist' ))
52
+ metric_definitions = [{'Name' : 'train:global_steps' , 'Regex' : r'global_step\/sec:\s(.*)' }])
54
53
inputs = estimator .sagemaker_session .upload_data (
55
54
path = os .path .join (RESOURCE_PATH , 'data' ),
56
55
key_prefix = 'scriptmode/mnist' )
57
56
58
57
with timeout .timeout (minutes = integ .TRAINING_DEFAULT_TIMEOUT_MINUTES ):
59
- estimator .fit (inputs )
58
+ estimator .fit (inputs = inputs , job_name = unique_name_from_base ( 'test-tf-sm-mnist' ) )
60
59
_assert_s3_files_exist (estimator .model_dir ,
61
60
['graph.pbtxt' , 'model.ckpt-0.index' , 'model.ckpt-0.meta' ])
62
61
df = estimator .training_job_analytics .dataframe ()
@@ -77,8 +76,7 @@ def test_server_side_encryption(sagemaker_session):
77
76
train_instance_type = 'ml.c5.xlarge' ,
78
77
sagemaker_session = sagemaker_session ,
79
78
py_version = 'py3' ,
80
- framework_version = '1.11' ,
81
- base_job_name = unique_name_from_base ('test-server-side-encryption' ),
79
+ framework_version = TensorFlow .LATEST_VERSION ,
82
80
code_location = output_path ,
83
81
output_path = output_path ,
84
82
model_dir = '/opt/ml/model' ,
@@ -89,7 +87,7 @@ def test_server_side_encryption(sagemaker_session):
89
87
key_prefix = 'scriptmode/mnist' )
90
88
91
89
with timeout .timeout (minutes = integ .TRAINING_DEFAULT_TIMEOUT_MINUTES ):
92
- estimator .fit (inputs )
90
+ estimator .fit (inputs = inputs , job_name = unique_name_from_base ( 'test-server-side-encryption' ) )
93
91
94
92
95
93
@pytest .mark .canary_quick
@@ -104,14 +102,13 @@ def test_mnist_distributed(sagemaker_session, instance_type):
104
102
py_version = integ .PYTHON_VERSION ,
105
103
script_mode = True ,
106
104
framework_version = TensorFlow .LATEST_VERSION ,
107
- distributions = PARAMETER_SERVER_DISTRIBUTION ,
108
- base_job_name = unique_name_from_base ('test-tf-sm-mnist' ))
105
+ distributions = PARAMETER_SERVER_DISTRIBUTION )
109
106
inputs = estimator .sagemaker_session .upload_data (
110
107
path = os .path .join (RESOURCE_PATH , 'data' ),
111
108
key_prefix = 'scriptmode/distributed_mnist' )
112
109
113
110
with timeout .timeout (minutes = integ .TRAINING_DEFAULT_TIMEOUT_MINUTES ):
114
- estimator .fit (inputs )
111
+ estimator .fit (inputs = inputs , job_name = unique_name_from_base ( 'test-tf-sm-distributed' ) )
115
112
_assert_s3_files_exist (estimator .model_dir ,
116
113
['graph.pbtxt' , 'model.ckpt-0.index' , 'model.ckpt-0.meta' ])
117
114
@@ -124,12 +121,11 @@ def test_mnist_async(sagemaker_session):
124
121
sagemaker_session = sagemaker_session ,
125
122
py_version = 'py3' ,
126
123
framework_version = TensorFlow .LATEST_VERSION ,
127
- base_job_name = unique_name_from_base ('test-tf-sm-mnist' ),
128
124
tags = TAGS )
129
125
inputs = estimator .sagemaker_session .upload_data (
130
126
path = os .path .join (RESOURCE_PATH , 'data' ),
131
127
key_prefix = 'scriptmode/mnist' )
132
- estimator .fit (inputs , wait = False )
128
+ estimator .fit (inputs = inputs , wait = False , job_name = unique_name_from_base ( 'test-tf-sm-async' ) )
133
129
training_job_name = estimator .latest_training_job .name
134
130
time .sleep (20 )
135
131
endpoint_name = training_job_name
0 commit comments