Skip to content

fix: use default bucket for checkpoint_s3_uri #1085

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 6 commits into from
Oct 12, 2019
Merged
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 10 additions & 30 deletions tests/integ/test_tf_script_mode.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,7 +19,7 @@
import pytest

from sagemaker.tensorflow import TensorFlow
from sagemaker.utils import unique_name_from_base
from sagemaker.utils import unique_name_from_base, sagemaker_timestamp

import tests.integ
from tests.integ import timeout
Expand All @@ -39,7 +39,11 @@
TAGS = [{"Key": "some-key", "Value": "some-value"}]


def test_mnist(sagemaker_session, instance_type):
def test_mnist_with_checkpoint_config(sagemaker_session, instance_type):
checkpoint_s3_uri = "s3://{}/tf-{}".format(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you add checkpoints in this url?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Updated.

sagemaker_session.default_bucket(), sagemaker_timestamp()
)
checkpoint_local_path = "/test/checkpoint/path"
estimator = TensorFlow(
entry_point=SCRIPT,
role="SageMakerRole",
Expand All @@ -50,13 +54,16 @@ def test_mnist(sagemaker_session, instance_type):
framework_version=TensorFlow.LATEST_VERSION,
py_version=tests.integ.PYTHON_VERSION,
metric_definitions=[{"Name": "train:global_steps", "Regex": r"global_step\/sec:\s(.*)"}],
checkpoint_s3_uri=checkpoint_s3_uri,
checkpoint_local_path=checkpoint_local_path
)
inputs = estimator.sagemaker_session.upload_data(
path=os.path.join(MNIST_RESOURCE_PATH, "data"), key_prefix="scriptmode/mnist"
)

training_job_name = unique_name_from_base("test-tf-sm-mnist")
with tests.integ.timeout.timeout(minutes=tests.integ.TRAINING_DEFAULT_TIMEOUT_MINUTES):
estimator.fit(inputs=inputs, job_name=unique_name_from_base("test-tf-sm-mnist"))
estimator.fit(inputs=inputs, job_name=training_job_name)
assert_s3_files_exist(
sagemaker_session,
estimator.model_dir,
Expand All @@ -65,33 +72,6 @@ def test_mnist(sagemaker_session, instance_type):
df = estimator.training_job_analytics.dataframe()
assert df.size > 0


@pytest.mark.skipif(
tests.integ.test_region() != "us-east-1",
reason="checkpoint s3 bucket is in us-east-1, ListObjectsV2 will fail in other regions",
)
def test_checkpoint_config(sagemaker_session, instance_type):
checkpoint_s3_uri = "s3://142577830533-us-east-1-sagemaker-checkpoint"
checkpoint_local_path = "/test/checkpoint/path"
estimator = TensorFlow(
entry_point=SCRIPT,
role="SageMakerRole",
train_instance_count=1,
train_instance_type=instance_type,
sagemaker_session=sagemaker_session,
script_mode=True,
framework_version=TensorFlow.LATEST_VERSION,
py_version=tests.integ.PYTHON_VERSION,
checkpoint_s3_uri=checkpoint_s3_uri,
checkpoint_local_path=checkpoint_local_path,
)
inputs = estimator.sagemaker_session.upload_data(
path=os.path.join(MNIST_RESOURCE_PATH, "data"), key_prefix="script/mnist"
)
training_job_name = unique_name_from_base("test-tf-sm-checkpoint")
with tests.integ.timeout.timeout(minutes=tests.integ.TRAINING_DEFAULT_TIMEOUT_MINUTES):
estimator.fit(inputs=inputs, job_name=training_job_name)

expected_training_checkpoint_config = {
"S3Uri": checkpoint_s3_uri,
"LocalPath": checkpoint_local_path,
Expand Down