Skip to content

fix: look for 'sagemaker.<framework>.<estimator/model>' module in v2 migration tool #1551

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 5, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
32 changes: 22 additions & 10 deletions src/sagemaker/cli/compatibility/v2/modifiers/framework_version.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
# TODO: check for sagemaker.tensorflow.serving.Model
FRAMEWORK_CLASSES = FRAMEWORKS + ["{}Model".format(fw) for fw in FRAMEWORKS]
FRAMEWORK_MODULES = [fw.lower() for fw in FRAMEWORKS]
FRAMEWORK_SUBMODULES = ("model", "estimator")


class FrameworkVersionEnforcer(Modifier):
Expand Down Expand Up @@ -68,19 +69,30 @@ def _is_framework_constructor(self, node):
if isinstance(node.func, ast.Name):
return node.func.id in FRAMEWORK_CLASSES

# Check for sagemaker.<framework>.<Framework> call
ends_with_framework_constructor = (
isinstance(node.func, ast.Attribute) and node.func.attr in FRAMEWORK_CLASSES
)
# Check for something.that.ends.with.<framework>.<Framework> call
if not (isinstance(node.func, ast.Attribute) and node.func.attr in FRAMEWORK_CLASSES):
return False

is_in_framework_module = (
# Check for sagemaker.<frameworks>.<estimator/model>.<Framework> call
if (
isinstance(node.func.value, ast.Attribute)
and node.func.value.attr in FRAMEWORK_MODULES
and isinstance(node.func.value.value, ast.Name)
and node.func.value.value.id == "sagemaker"
)
and node.func.value.attr in FRAMEWORK_SUBMODULES
):
return self._is_in_framework_module(node.func.value)

return ends_with_framework_constructor and is_in_framework_module
# Check for sagemaker.<framework>.<Framework> call
return self._is_in_framework_module(node.func)

def _is_in_framework_module(self, node):
"""Checks if the node is an ``ast.Attribute`` that represents a
``sagemaker.<framework>`` module.
"""
return (
isinstance(node.value, ast.Attribute)
and node.value.attr in FRAMEWORK_MODULES
and isinstance(node.value.value, ast.Name)
and node.value.value.id == "sagemaker"
)

def _fw_version_in_keywords(self, node):
"""Checks if the ``ast.Call`` node's keywords contain ``framework_version``."""
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -32,24 +32,34 @@ def test_node_should_be_modified_fw_constructor_no_fw_version():
fw_constructors = (
"TensorFlow()",
"sagemaker.tensorflow.TensorFlow()",
"sagemaker.tensorflow.estimator.TensorFlow()",
"TensorFlowModel()",
"sagemaker.tensorflow.TensorFlowModel()",
"sagemaker.tensorflow.model.TensorFlowModel()",
"MXNet()",
"sagemaker.mxnet.MXNet()",
"sagemaker.mxnet.estimator.MXNet()",
"MXNetModel()",
"sagemaker.mxnet.MXNetModel()",
"sagemaker.mxnet.model.MXNetModel()",
"Chainer()",
"sagemaker.chainer.Chainer()",
"sagemaker.chainer.estimator.Chainer()",
"ChainerModel()",
"sagemaker.chainer.ChainerModel()",
"sagemaker.chainer.model.ChainerModel()",
"PyTorch()",
"sagemaker.pytorch.PyTorch()",
"sagemaker.pytorch.estimator.PyTorch()",
"PyTorchModel()",
"sagemaker.pytorch.PyTorchModel()",
"sagemaker.pytorch.model.PyTorchModel()",
"SKLearn()",
"sagemaker.sklearn.SKLearn()",
"sagemaker.sklearn.estimator.SKLearn()",
"SKLearnModel()",
"sagemaker.sklearn.SKLearnModel()",
"sagemaker.sklearn.model.SKLearnModel()",
)

modifier = framework_version.FrameworkVersionEnforcer()
Expand All @@ -63,24 +73,34 @@ def test_node_should_be_modified_fw_constructor_with_fw_version():
fw_constructors = (
"TensorFlow(framework_version='2.2')",
"sagemaker.tensorflow.TensorFlow(framework_version='2.2')",
"sagemaker.tensorflow.estimator.TensorFlow(framework_version='2.2')",
"TensorFlowModel(framework_version='1.10')",
"sagemaker.tensorflow.TensorFlowModel(framework_version='1.10')",
"sagemaker.tensorflow.model.TensorFlowModel(framework_version='1.10')",
"MXNet(framework_version='1.6')",
"sagemaker.mxnet.MXNet(framework_version='1.6')",
"sagemaker.mxnet.estimator.MXNet(framework_version='1.6')",
"MXNetModel(framework_version='1.6')",
"sagemaker.mxnet.MXNetModel(framework_version='1.6')",
"sagemaker.mxnet.model.MXNetModel(framework_version='1.6')",
"PyTorch(framework_version='1.4')",
"sagemaker.pytorch.PyTorch(framework_version='1.4')",
"sagemaker.pytorch.estimator.PyTorch(framework_version='1.4')",
"PyTorchModel(framework_version='1.4')",
"sagemaker.pytorch.PyTorchModel(framework_version='1.4')",
"sagemaker.pytorch.model.PyTorchModel(framework_version='1.4')",
"Chainer(framework_version='5.0')",
"sagemaker.chainer.Chainer(framework_version='5.0')",
"sagemaker.chainer.estimator.Chainer(framework_version='5.0')",
"ChainerModel(framework_version='5.0')",
"sagemaker.chainer.ChainerModel(framework_version='5.0')",
"sagemaker.chainer.model.ChainerModel(framework_version='5.0')",
"SKLearn(framework_version='0.20.0')",
"sagemaker.sklearn.SKLearn(framework_version='0.20.0')",
"sagemaker.sklearn.estimator.SKLearn(framework_version='0.20.0')",
"SKLearnModel(framework_version='0.20.0')",
"sagemaker.sklearn.SKLearnModel(framework_version='0.20.0')",
"sagemaker.sklearn.model.SKLearnModel(framework_version='0.20.0')",
)

modifier = framework_version.FrameworkVersionEnforcer()
Expand All @@ -97,51 +117,36 @@ def test_node_should_be_modified_random_function_call():


def test_modify_node_tf():
classes = (
"TensorFlow" "sagemaker.tensorflow.TensorFlow",
"TensorFlowModel",
"sagemaker.tensorflow.TensorFlowModel",
)
_test_modify_node(classes, "1.11.0")
_test_modify_node("TensorFlow", "1.11.0")


def test_modify_node_mx():
classes = ("MXNet", "sagemaker.mxnet.MXNet", "MXNetModel", "sagemaker.mxnet.MXNetModel")
_test_modify_node(classes, "1.2.0")
_test_modify_node("MXNet", "1.2.0")


def test_modify_node_chainer():
classes = (
"Chainer",
"sagemaker.chainer.Chainer",
"ChainerModel",
"sagemaker.chainer.ChainerModel",
)
_test_modify_node(classes, "4.1.0")
_test_modify_node("Chainer", "4.1.0")


def test_modify_node_pt():
classes = (
"PyTorch",
"sagemaker.pytorch.PyTorch",
"PyTorchModel",
"sagemaker.pytorch.PyTorchModel",
)
_test_modify_node(classes, "0.4.0")
_test_modify_node("PyTorch", "0.4.0")


def test_modify_node_sklearn():
classes = (
"SKLearn",
"sagemaker.sklearn.SKLearn",
"SKLearnModel",
"sagemaker.sklearn.SKLearnModel",
)
_test_modify_node(classes, "0.20.0")
_test_modify_node("SKLearn", "0.20.0")


def _test_modify_node(classes, default_version):
def _test_modify_node(framework, default_version):
modifier = framework_version.FrameworkVersionEnforcer()

classes = (
"{}".format(framework),
"sagemaker.{}.{}".format(framework.lower(), framework),
"sagemaker.{}.estimator.{}".format(framework.lower(), framework),
"{}Model".format(framework),
"sagemaker.{}.{}Model".format(framework.lower(), framework),
"sagemaker.{}.model.{}Model".format(framework.lower(), framework),
)
for cls in classes:
node = ast_call("{}()".format(cls))
modifier.modify_node(node)
Expand Down