Skip to content

feature: add model and predictor for HuggingFace #2308

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Closed
wants to merge 15 commits into from
Closed
Show file tree
Hide file tree
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
308 changes: 308 additions & 0 deletions src/sagemaker/huggingface/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,308 @@
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Placeholder docstring"""
from __future__ import absolute_import

import logging

import sagemaker
from sagemaker import image_uris
from sagemaker.deserializers import NumpyDeserializer
from sagemaker.fw_utils import (
model_code_key_prefix,
validate_version_or_image_args,
)
from sagemaker.model import FrameworkModel, MODEL_SERVER_WORKERS_PARAM_NAME
from sagemaker.predictor import Predictor
from sagemaker.serializers import NumpySerializer

logger = logging.getLogger("sagemaker")


class HuggingFacePredictor(Predictor):
"""A Predictor for inference against HuggingFace Endpoints.

This is able to serialize Python lists, dictionaries, and numpy arrays to
multidimensional tensors for HuggingFace inference.
"""

def __init__(
self,
endpoint_name,
sagemaker_session=None,
serializer=NumpySerializer(),
deserializer=NumpyDeserializer(),
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

NumpySerializer -> JSONSerializer

from sagemaker.serializers import JSONSerializer
from sagemaker.deserializers import JSONDeserializer

):
"""Initialize an ``HuggingFacePredictor``.

Args:
endpoint_name (str): The name of the endpoint to perform inference
on.
sagemaker_session (sagemaker.session.Session): Session object which
manages interactions with Amazon SageMaker APIs and any other
AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.
serializer (sagemaker.serializers.BaseSerializer): Optional. Default
serializes input data to .npy format. Handles lists and numpy
arrays.
deserializer (sagemaker.deserializers.BaseDeserializer): Optional.
Default parses the response from .npy format to numpy array.
"""
super(HuggingFacePredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=serializer,
deserializer=deserializer,
)


def _validate_pt_tf_versions(pytorch_version, tensorflow_version, image_uri):

if image_uri is not None:
return

if tensorflow_version is not None and pytorch_version is not None:
raise ValueError(
"tensorflow_version and pytorch_version are both not None. "
"Specify only tensorflow_version or pytorch_version."
)
if tensorflow_version is None and pytorch_version is None:
raise ValueError(
"tensorflow_version and pytorch_version are both None. "
"Specify either tensorflow_version or pytorch_version."
)


class HuggingFaceModel(FrameworkModel):
"""An PyTorch SageMaker ``Model`` that can be deployed to a SageMaker ``Endpoint``."""

_framework_name = "huggingface"

def __init__(
self,
model_data,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

could this be optional, since we have the option to create an endpoint with model_data.

role,
entry_point=None,
transformers_version=None,
tensorflow_version=None,
pytorch_version=None,
py_version=None,
image_uri=None,
predictor_cls=HuggingFacePredictor,
model_server_workers=None,
**kwargs,
):
"""Initialize a PyTorchModel.

Args:
model_data (str): The S3 location of a SageMaker model data
``.tar.gz`` file.
role (str): An AWS IAM role (either name or full ARN). The Amazon
SageMaker training jobs and APIs that create Amazon SageMaker
endpoints use this role to access training data and model
artifacts. After the endpoint is created, the inference code
might use the IAM role, if it needs to access an AWS resource.
entry_point (str): Path (absolute or relative) to the Python source
file which should be executed as the entry point to model
hosting. If ``source_dir`` is specified, then ``entry_point``
must point to a file located at the root of ``source_dir``.
Defaults to None.
transformers_version (str): transformers version you want to use for
executing your model training code. Defaults to None. Required
unless ``image_uri`` is provided.
tensorflow_version (str): TensorFlow version you want to use for
executing your inference code. Defaults to ``None``. Required unless
``pytorch_version`` is provided. List of supported versions:
https://github.com/aws/sagemaker-python-sdk#huggingface-sagemaker-estimators.
pytorch_version (str): PyTorch version you want to use for
executing your inference code. Defaults to ``None``. Required unless
``tensorflow_version`` is provided. List of supported versions:
https://github.com/aws/sagemaker-python-sdk#huggingface-sagemaker-estimators.
py_version (str): Python version you want to use for executing your
model training code. Defaults to ``None``. Required unless
``image_uri`` is provided.
image_uri (str): A Docker image URI (default: None). If not specified, a
default image for PyTorch will be used. If ``framework_version``
or ``py_version`` are ``None``, then ``image_uri`` is required. If
also ``None``, then a ``ValueError`` will be raised.
predictor_cls (callable[str, sagemaker.session.Session]): A function
to call to create a predictor with an endpoint name and
SageMaker ``Session``. If specified, ``deploy()`` returns the
result of invoking this function on the created endpoint name.
model_server_workers (int): Optional. The number of worker processes
used by the inference server. If None, server will use one
worker per vCPU.
**kwargs: Keyword arguments passed to the superclass
:class:`~sagemaker.model.FrameworkModel` and, subsequently, its
superclass :class:`~sagemaker.model.Model`.

.. tip::

You can find additional parameters for initializing this class at
:class:`~sagemaker.model.FrameworkModel` and
:class:`~sagemaker.model.Model`.
"""
validate_version_or_image_args(transformers_version, py_version, image_uri)
_validate_pt_tf_versions(
pytorch_version=pytorch_version,
tensorflow_version=tensorflow_version,
image_uri=image_uri,
)
if py_version == "py2":
raise ValueError("py2 is not supported with HuggingFace images")
self.framework_version = transformers_version
self.pytorch_version = pytorch_version
self.tensorflow_version = tensorflow_version
self.py_version = py_version

super(HuggingFaceModel, self).__init__(
model_data, image_uri, role, entry_point, predictor_cls=predictor_cls, **kwargs
)

self.model_server_workers = model_server_workers

def register(
self,
content_types,
response_types,
inference_instances,
transform_instances,
model_package_name=None,
model_package_group_name=None,
image_uri=None,
model_metrics=None,
metadata_properties=None,
marketplace_cert=False,
approval_status=None,
description=None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Args:
content_types (list): The supported MIME types for the input data.
response_types (list): The supported MIME types for the output data.
inference_instances (list): A list of the instance types that are used to
generate inferences in real-time.
transform_instances (list): A list of the instance types on which a transformation
job can be run or on which an endpoint can be deployed.
model_package_name (str): Model Package name, exclusive to `model_package_group_name`,
using `model_package_name` makes the Model Package un-versioned (default: None).
model_package_group_name (str): Model Package Group name, exclusive to
`model_package_name`, using `model_package_group_name` makes the Model Package
versioned (default: None).
image_uri (str): Inference image uri for the container. Model class' self.image will
be used if it is None (default: None).
model_metrics (ModelMetrics): ModelMetrics object (default: None).
metadata_properties (MetadataProperties): MetadataProperties object (default: None).
marketplace_cert (bool): A boolean value indicating if the Model Package is certified
for AWS Marketplace (default: False).
approval_status (str): Model Approval Status, values can be "Approved", "Rejected",
or "PendingManualApproval" (default: "PendingManualApproval").
description (str): Model Package description (default: None).

Returns:
A `sagemaker.model.ModelPackage` instance.
"""
instance_type = inference_instances[0]
self._init_sagemaker_session_if_does_not_exist(instance_type)

if image_uri:
self.image_uri = image_uri
if not self.image_uri:
self.image_uri = self.serving_image_uri(
region_name=self.sagemaker_session.boto_session.region_name,
instance_type=instance_type,
)
return super(HuggingFaceModel, self).register(
content_types,
response_types,
inference_instances,
transform_instances,
model_package_name,
model_package_group_name,
image_uri,
model_metrics,
metadata_properties,
marketplace_cert,
approval_status,
description,
)

def prepare_container_def(self, instance_type=None, accelerator_type=None):
"""A container definition with framework configuration set in model environment variables.

Args:
instance_type (str): The EC2 instance type to deploy this Model to.
For example, 'ml.p2.xlarge'.
accelerator_type (str): The Elastic Inference accelerator type to
deploy to the instance for loading and making inferences to the
model.

Returns:
dict[str, str]: A container definition object usable with the
CreateModel API.
"""
deploy_image = self.image_uri
if not deploy_image:
if instance_type is None:
raise ValueError(
"Must supply either an instance type (for choosing CPU vs GPU) or an image URI."
)

region_name = self.sagemaker_session.boto_session.region_name
deploy_image = self.serving_image_uri(
region_name, instance_type, accelerator_type=accelerator_type
)

deploy_key_prefix = model_code_key_prefix(self.key_prefix, self.name, deploy_image)
self._upload_code(deploy_key_prefix, repack=True)
deploy_env = dict(self.env)
deploy_env.update(self._framework_env_vars())

if self.model_server_workers:
deploy_env[MODEL_SERVER_WORKERS_PARAM_NAME.upper()] = str(self.model_server_workers)
return sagemaker.container_def(
deploy_image, self.repacked_model_data or self.model_data, deploy_env
)

def serving_image_uri(self, region_name, instance_type, accelerator_type=None):
"""Create a URI for the serving image.

Args:
region_name (str): AWS region where the image is uploaded.
instance_type (str): SageMaker instance type. Used to determine device type
(cpu/gpu/family-specific optimized).
accelerator_type (str): The Elastic Inference accelerator type to
deploy to the instance for loading and making inferences to the
model.

Returns:
str: The appropriate image URI based on the given parameters.

"""
if self.tensorflow_version is not None: # pylint: disable=no-member
base_framework_version = (
f"tensorflow{self.tensorflow_version}" # pylint: disable=no-member
)
else:
base_framework_version = f"pytorch{self.pytorch_version}" # pylint: disable=no-member
return image_uris.retrieve(
self._framework_name,
region_name,
version=self.framework_version,
py_version=self.py_version,
instance_type=instance_type,
accelerator_type=accelerator_type,
image_scope="inference",
base_framework_version=base_framework_version,
)
2 changes: 1 addition & 1 deletion src/sagemaker/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -1111,7 +1111,7 @@ def prepare_container_def(self, instance_type=None, accelerator_type=None):
def _upload_code(self, key_prefix, repack=False):
"""Placeholder Docstring"""
local_code = utils.get_config_value("local.local_code", self.sagemaker_session.config)
if self.sagemaker_session.local_mode and local_code:
if (self.sagemaker_session.local_mode and local_code) or self.entry_point is None:
self.uploaded_code = None
elif not repack:
bucket = self.bucket or self.sagemaker_session.default_bucket()
Expand Down