Skip to content

[fix] Check py_version existence in RegisterModel step #2320

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 4 commits into from
May 6, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion src/sagemaker/workflow/_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -307,7 +307,7 @@ def arguments(self) -> RequestType:
model._framework_name,
region_name,
version=model.framework_version,
py_version=model.py_version,
py_version=model.py_version if hasattr(model, "py_version") else None,
instance_type=self.kwargs.get("instance_type", self.estimator.instance_type),
accelerator_type=self.kwargs.get("accelerator_type"),
image_scope="inference",
Expand Down
64 changes: 64 additions & 0 deletions tests/unit/sagemaker/workflow/test_step_collections.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
)

from sagemaker.estimator import Estimator
from sagemaker.tensorflow import TensorFlow
from sagemaker.inputs import CreateModelInput, TransformInput
from sagemaker.model_metrics import (
MetricsSource,
Expand Down Expand Up @@ -120,6 +121,19 @@ def estimator(sagemaker_session):
)


@pytest.fixture
def estimator_tf(sagemaker_session):
return TensorFlow(
entry_point="/some/script.py",
framework_version="1.15.2",
py_version="py3",
role=ROLE,
instance_type="ml.c4.2xlarge",
instance_count=1,
sagemaker_session=sagemaker_session,
)


@pytest.fixture
def model_metrics():
return ModelMetrics(
Expand Down Expand Up @@ -202,6 +216,56 @@ def test_register_model(estimator, model_metrics):
)


def test_register_model_tf(estimator_tf, model_metrics):
model_data = f"s3://{BUCKET}/model.tar.gz"
register_model = RegisterModel(
name="RegisterModelStep",
estimator=estimator_tf,
model_data=model_data,
content_types=["content_type"],
response_types=["response_type"],
inference_instances=["inference_instance"],
transform_instances=["transform_instance"],
model_package_group_name="mpg",
model_metrics=model_metrics,
approval_status="Approved",
description="description",
)
assert ordered(register_model.request_dicts()) == ordered(
[
{
"Name": "RegisterModelStep",
"Type": "RegisterModel",
"Arguments": {
"InferenceSpecification": {
"Containers": [
{
"Image": "763104351884.dkr.ecr.us-west-2.amazonaws.com/tensorflow-inference:1.15.2-cpu",
"ModelDataUrl": f"s3://{BUCKET}/model.tar.gz",
}
],
"SupportedContentTypes": ["content_type"],
"SupportedRealtimeInferenceInstanceTypes": ["inference_instance"],
"SupportedResponseMIMETypes": ["response_type"],
"SupportedTransformInstanceTypes": ["transform_instance"],
},
"ModelApprovalStatus": "Approved",
"ModelMetrics": {
"ModelQuality": {
"Statistics": {
"ContentType": "text/csv",
"S3Uri": f"s3://{BUCKET}/metrics.csv",
},
},
},
"ModelPackageDescription": "description",
"ModelPackageGroupName": "mpg",
},
},
]
)


def test_register_model_with_model_repack(estimator, model_metrics):
model_data = f"s3://{BUCKET}/model.tar.gz"
register_model = RegisterModel(
Expand Down