Skip to content

feature: HuggingFace Inference #2511

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 29 commits into from
Jul 7, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
29 commits
Select commit Hold shift + click to select a range
cf4e9b1
add hf model and tests
ahsan-z-khan Jul 1, 2021
bcbee05
change test marking
ahsan-z-khan Jul 1, 2021
028b971
change test mark as release
ahsan-z-khan Jul 1, 2021
282fd7a
remove image uri
ahsan-z-khan Jul 1, 2021
a46b75d
change conftest to support only training
ahsan-z-khan Jul 1, 2021
91651b0
black-format fixed
ahsan-z-khan Jul 1, 2021
0bad493
add py version to hf test
ahsan-z-khan Jul 2, 2021
43f34ab
update hf integ test
ahsan-z-khan Jul 2, 2021
98e5151
update hf integ test
ahsan-z-khan Jul 2, 2021
839c68a
check hf test on tf
ahsan-z-khan Jul 2, 2021
053a854
test image uri
ahsan-z-khan Jul 2, 2021
56fc48a
test tf on hf
ahsan-z-khan Jul 2, 2021
721ba34
change framework name
ahsan-z-khan Jul 2, 2021
f408baf
add image tags
ahsan-z-khan Jul 2, 2021
3a5b627
add container_version
ahsan-z-khan Jul 2, 2021
fed6182
add container_version in model
ahsan-z-khan Jul 3, 2021
f7649ff
fix black format
ahsan-z-khan Jul 3, 2021
5ad0510
add inference test
ahsan-z-khan Jul 6, 2021
8452f5f
fix unit tests
ahsan-z-khan Jul 6, 2021
7a71337
test region
ahsan-z-khan Jul 6, 2021
01c8491
test entry point
ahsan-z-khan Jul 6, 2021
c95b899
fix black format
ahsan-z-khan Jul 6, 2021
11f4abe
remove pdb
ahsan-z-khan Jul 6, 2021
16d2f0a
remove print statements
ahsan-z-khan Jul 6, 2021
e336e05
update container version
ahsan-z-khan Jul 6, 2021
b261f98
update container version
ahsan-z-khan Jul 6, 2021
b9d6003
add processor
ahsan-z-khan Jul 6, 2021
81e0d5a
update entry_point
ahsan-z-khan Jul 6, 2021
fd1efd0
remove print statements
ahsan-z-khan Jul 7, 2021
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/sagemaker/huggingface/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,3 +14,4 @@
from __future__ import absolute_import

from sagemaker.huggingface.estimator import HuggingFace # noqa: F401
from sagemaker.huggingface.model import HuggingFaceModel, HuggingFacePredictor # noqa: F401
55 changes: 53 additions & 2 deletions src/sagemaker/huggingface/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
warn_if_parameter_server_with_multi_gpu,
validate_smdistributed,
)
from sagemaker.huggingface.model import HuggingFaceModel
from sagemaker.vpc_utils import VPC_CONFIG_DEFAULT

logger = logging.getLogger("sagemaker")
Expand Down Expand Up @@ -233,8 +234,58 @@ def create_model(
dependencies=None,
**kwargs
):
"""Placeholder docstring"""
raise NotImplementedError("Creating model with HuggingFace training job is not supported.")
"""Create a SageMaker ``HuggingFaceModel`` object that can be deployed to an ``Endpoint``.

Args:
model_server_workers (int): Optional. The number of worker processes
used by the inference server. If None, server will use one
worker per vCPU.
role (str): The ``ExecutionRoleArn`` IAM Role ARN for the ``Model``,
which is also used during transform jobs. If not specified, the
role from the Estimator will be used.
vpc_config_override (dict[str, list[str]]): Optional override for VpcConfig set on
the model. Default: use subnets and security groups from this Estimator.
* 'Subnets' (list[str]): List of subnet ids.
* 'SecurityGroupIds' (list[str]): List of security group ids.
entry_point (str): Path (absolute or relative) to the local Python source file which
should be executed as the entry point to training. If ``source_dir`` is specified,
then ``entry_point`` must point to a file located at the root of ``source_dir``.
Defaults to `None`.
source_dir (str): Path (absolute or relative) to a directory with any other serving
source code dependencies aside from the entry point file.
If not specified, the model source directory from training is used.
dependencies (list[str]): A list of paths to directories (absolute or relative) with
any additional libraries that will be exported to the container.
If not specified, the dependencies from training are used.
This is not supported with "local code" in Local Mode.
**kwargs: Additional kwargs passed to the :class:`~sagemaker.huggingface.model.HuggingFaceModel`
constructor.
Returns:
sagemaker.huggingface.model.HuggingFaceModel: A SageMaker ``HuggingFaceModel``
object. See :func:`~sagemaker.huggingface.model.HuggingFaceModel` for full details.
"""
if "image_uri" not in kwargs:
kwargs["image_uri"] = self.image_uri

kwargs["name"] = self._get_or_create_name(kwargs.get("name"))

return HuggingFaceModel(
role or self.role,
model_data=self.model_data,
entry_point=entry_point,
transformers_version=self.framework_version,
tensorflow_version=self.tensorflow_version,
pytorch_version=self.pytorch_version,
py_version=self.py_version,
source_dir=(source_dir or self._model_source_dir()),
container_log_level=self.container_log_level,
code_location=self.code_location,
model_server_workers=model_server_workers,
sagemaker_session=self.sagemaker_session,
vpc_config=self.get_vpc_config(vpc_config_override),
dependencies=(dependencies or self.dependencies),
**kwargs
)

@classmethod
def _prepare_init_params_from_job_description(cls, job_details, model_channel_name=None):
Expand Down
314 changes: 314 additions & 0 deletions src/sagemaker/huggingface/model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,314 @@
# Copyright 2021 Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Placeholder docstring"""
from __future__ import absolute_import

import logging

import sagemaker
from sagemaker import image_uris
from sagemaker.deserializers import JSONDeserializer
from sagemaker.fw_utils import (
model_code_key_prefix,
validate_version_or_image_args,
)
from sagemaker.model import FrameworkModel, MODEL_SERVER_WORKERS_PARAM_NAME
from sagemaker.predictor import Predictor
from sagemaker.serializers import JSONSerializer

logger = logging.getLogger("sagemaker")


class HuggingFacePredictor(Predictor):
"""A Predictor for inference against HuggingFace Endpoints.

This is able to serialize Python lists, dictionaries, and numpy arrays to
multidimensional tensors for HuggingFace inference.
"""

def __init__(
self,
endpoint_name,
sagemaker_session=None,
serializer=JSONSerializer(),
deserializer=JSONDeserializer(),
):
"""Initialize an ``HuggingFacePredictor``.

Args:
endpoint_name (str): The name of the endpoint to perform inference
on.
sagemaker_session (sagemaker.session.Session): Session object which
manages interactions with Amazon SageMaker APIs and any other
AWS services needed. If not specified, the estimator creates one
using the default AWS configuration chain.
serializer (sagemaker.serializers.BaseSerializer): Optional. Default
serializes input data to .npy format. Handles lists and numpy
arrays.
deserializer (sagemaker.deserializers.BaseDeserializer): Optional.
Default parses the response from .npy format to numpy array.
"""
super(HuggingFacePredictor, self).__init__(
endpoint_name,
sagemaker_session,
serializer=serializer,
deserializer=deserializer,
)


def _validate_pt_tf_versions(pytorch_version, tensorflow_version, image_uri):
"""Placeholder docstring"""

if image_uri is not None:
return

if tensorflow_version is not None and pytorch_version is not None:
raise ValueError(
"tensorflow_version and pytorch_version are both not None. "
"Specify only tensorflow_version or pytorch_version."
)
if tensorflow_version is None and pytorch_version is None:
raise ValueError(
"tensorflow_version and pytorch_version are both None. "
"Specify either tensorflow_version or pytorch_version."
)


class HuggingFaceModel(FrameworkModel):
"""An HuggingFace SageMaker ``Model`` that can be deployed to a SageMaker ``Endpoint``."""

_framework_name = "huggingface"

def __init__(
self,
role,
model_data=None,
entry_point=None,
transformers_version=None,
tensorflow_version=None,
pytorch_version=None,
py_version=None,
image_uri=None,
predictor_cls=HuggingFacePredictor,
model_server_workers=None,
**kwargs,
):
"""Initialize a HuggingFaceModel.

Args:
model_data (str): The S3 location of a SageMaker model data
``.tar.gz`` file.
role (str): An AWS IAM role (either name or full ARN). The Amazon
SageMaker training jobs and APIs that create Amazon SageMaker
endpoints use this role to access training data and model
artifacts. After the endpoint is created, the inference code
might use the IAM role, if it needs to access an AWS resource.
entry_point (str): Path (absolute or relative) to the Python source
file which should be executed as the entry point to model
hosting. If ``source_dir`` is specified, then ``entry_point``
must point to a file located at the root of ``source_dir``.
Defaults to None.
transformers_version (str): transformers version you want to use for
executing your model training code. Defaults to None. Required
unless ``image_uri`` is provided.
tensorflow_version (str): TensorFlow version you want to use for
executing your inference code. Defaults to ``None``. Required unless
``pytorch_version`` is provided. List of supported versions:
https://github.com/aws/sagemaker-python-sdk#huggingface-sagemaker-estimators.
pytorch_version (str): PyTorch version you want to use for
executing your inference code. Defaults to ``None``. Required unless
``tensorflow_version`` is provided. List of supported versions:
https://github.com/aws/sagemaker-python-sdk#huggingface-sagemaker-estimators.
py_version (str): Python version you want to use for executing your
model training code. Defaults to ``None``. Required unless
``image_uri`` is provided.
image_uri (str): A Docker image URI (default: None). If not specified, a
default image for PyTorch will be used. If ``framework_version``
or ``py_version`` are ``None``, then ``image_uri`` is required. If
also ``None``, then a ``ValueError`` will be raised.
predictor_cls (callable[str, sagemaker.session.Session]): A function
to call to create a predictor with an endpoint name and
SageMaker ``Session``. If specified, ``deploy()`` returns the
result of invoking this function on the created endpoint name.
model_server_workers (int): Optional. The number of worker processes
used by the inference server. If None, server will use one
worker per vCPU.
**kwargs: Keyword arguments passed to the superclass
:class:`~sagemaker.model.FrameworkModel` and, subsequently, its
superclass :class:`~sagemaker.model.Model`.

.. tip::

You can find additional parameters for initializing this class at
:class:`~sagemaker.model.FrameworkModel` and
:class:`~sagemaker.model.Model`.
"""
validate_version_or_image_args(transformers_version, py_version, image_uri)
_validate_pt_tf_versions(
pytorch_version=pytorch_version,
tensorflow_version=tensorflow_version,
image_uri=image_uri,
)
if py_version == "py2":
raise ValueError("py2 is not supported with HuggingFace images")
self.framework_version = transformers_version
self.pytorch_version = pytorch_version
self.tensorflow_version = tensorflow_version
self.py_version = py_version

super(HuggingFaceModel, self).__init__(
model_data, image_uri, role, entry_point, predictor_cls=predictor_cls, **kwargs
)

self.model_server_workers = model_server_workers

def register(
self,
content_types,
response_types,
inference_instances,
transform_instances,
model_package_name=None,
model_package_group_name=None,
image_uri=None,
model_metrics=None,
metadata_properties=None,
marketplace_cert=False,
approval_status=None,
description=None,
):
"""Creates a model package for creating SageMaker models or listing on Marketplace.

Args:
content_types (list): The supported MIME types for the input data.
response_types (list): The supported MIME types for the output data.
inference_instances (list): A list of the instance types that are used to
generate inferences in real-time.
transform_instances (list): A list of the instance types on which a transformation
job can be run or on which an endpoint can be deployed.
model_package_name (str): Model Package name, exclusive to `model_package_group_name`,
using `model_package_name` makes the Model Package un-versioned (default: None).
model_package_group_name (str): Model Package Group name, exclusive to
`model_package_name`, using `model_package_group_name` makes the Model Package
versioned (default: None).
image_uri (str): Inference image uri for the container. Model class' self.image will
be used if it is None (default: None).
model_metrics (ModelMetrics): ModelMetrics object (default: None).
metadata_properties (MetadataProperties): MetadataProperties object (default: None).
marketplace_cert (bool): A boolean value indicating if the Model Package is certified
for AWS Marketplace (default: False).
approval_status (str): Model Approval Status, values can be "Approved", "Rejected",
or "PendingManualApproval" (default: "PendingManualApproval").
description (str): Model Package description (default: None).

Returns:
A `sagemaker.model.ModelPackage` instance.
"""
instance_type = inference_instances[0]
self._init_sagemaker_session_if_does_not_exist(instance_type)

if image_uri:
self.image_uri = image_uri
if not self.image_uri:
self.image_uri = self.serving_image_uri(
region_name=self.sagemaker_session.boto_session.region_name,
instance_type=instance_type,
)
return super(HuggingFaceModel, self).register(
content_types,
response_types,
inference_instances,
transform_instances,
model_package_name,
model_package_group_name,
image_uri,
model_metrics,
metadata_properties,
marketplace_cert,
approval_status,
description,
)

def prepare_container_def(self, instance_type=None, accelerator_type=None):
"""A container definition with framework configuration set in model environment variables.

Args:
instance_type (str): The EC2 instance type to deploy this Model to.
For example, 'ml.p2.xlarge'.
accelerator_type (str): The Elastic Inference accelerator type to
deploy to the instance for loading and making inferences to the
model.

Returns:
dict[str, str]: A container definition object usable with the
CreateModel API.
"""
deploy_image = self.image_uri
if not deploy_image:
if instance_type is None:
raise ValueError(
"Must supply either an instance type (for choosing CPU vs GPU) or an image URI."
)

region_name = self.sagemaker_session.boto_session.region_name
deploy_image = self.serving_image_uri(
region_name, instance_type, accelerator_type=accelerator_type
)

deploy_key_prefix = model_code_key_prefix(self.key_prefix, self.name, deploy_image)
self._upload_code(deploy_key_prefix, repack=True)
deploy_env = dict(self.env)
deploy_env.update(self._framework_env_vars())

if self.model_server_workers:
deploy_env[MODEL_SERVER_WORKERS_PARAM_NAME.upper()] = str(self.model_server_workers)
return sagemaker.container_def(
deploy_image, self.repacked_model_data or self.model_data, deploy_env
)

def serving_image_uri(self, region_name, instance_type, accelerator_type=None):
"""Create a URI for the serving image.

Args:
region_name (str): AWS region where the image is uploaded.
instance_type (str): SageMaker instance type. Used to determine device type
(cpu/gpu/family-specific optimized).
accelerator_type (str): The Elastic Inference accelerator type to
deploy to the instance for loading and making inferences to the
model.

Returns:
str: The appropriate image URI based on the given parameters.

"""
if image_uris._processor(instance_type, ["cpu", "gpu"]) == "gpu":
container_version = "cu110-ubuntu18.04"
else:
container_version = "ubuntu18.04"
if self.tensorflow_version is not None: # pylint: disable=no-member
base_framework_version = (
f"tensorflow{self.tensorflow_version}" # pylint: disable=no-member
)
else:
base_framework_version = f"pytorch{self.pytorch_version}" # pylint: disable=no-member
return image_uris.retrieve(
self._framework_name,
region_name,
version=self.framework_version,
py_version=self.py_version,
instance_type=instance_type,
accelerator_type=accelerator_type,
image_scope="inference",
base_framework_version=base_framework_version,
container_version=container_version,
)
Loading