Skip to content

documentation: Update estimator docstrings to add Fast File Mode #2722

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 7 commits into from
Oct 28, 2021
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
58 changes: 27 additions & 31 deletions src/sagemaker/estimator.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,63 +11,54 @@
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
"""Placeholder docstring"""
from __future__ import print_function, absolute_import
from __future__ import absolute_import, print_function

import json
import logging
import os
import uuid
from abc import ABCMeta, abstractmethod

from abc import ABCMeta
from abc import abstractmethod

from six import with_metaclass
from six import string_types
from six import string_types, with_metaclass
from six.moves.urllib.parse import urlparse

import sagemaker
from sagemaker import git_utils, image_uris
from sagemaker import git_utils, image_uris, vpc_utils
from sagemaker.analytics import TrainingJobAnalytics
from sagemaker.debugger import TensorBoardOutputConfig # noqa: F401 # pylint: disable=unused-import
from sagemaker.debugger import (
from sagemaker.debugger import ( # noqa: F401 # pylint: disable=unused-import
DEBUGGER_FLAG,
DebuggerHookConfig,
FrameworkProfile,
get_default_profiler_rule,
get_rule_container_image_uri,
ProfilerConfig,
ProfilerRule,
Rule,
TensorBoardOutputConfig,
get_default_profiler_rule,
get_rule_container_image_uri,
)
from sagemaker.deprecations import (
removed_kwargs,
removed_function,
renamed_kwargs,
)
from sagemaker.s3 import S3Uploader, parse_s3_url

from sagemaker.deprecations import removed_function, removed_kwargs, renamed_kwargs
from sagemaker.fw_utils import (
tar_and_upload_dir,
UploadedCode,
validate_source_dir,
_region_supports_debugger,
_region_supports_profiler,
get_mp_parameters,
tar_and_upload_dir,
validate_source_dir,
)
from sagemaker.workflow.properties import Properties
from sagemaker.workflow.parameters import Parameter
from sagemaker.workflow.entities import Expression
from sagemaker.inputs import TrainingInput
from sagemaker.job import _Job
from sagemaker.local import LocalSession
from sagemaker.model import Model, NEO_ALLOWED_FRAMEWORKS
from sagemaker.model import (
SCRIPT_PARAM_NAME,
DIR_PARAM_NAME,
CONTAINER_LOG_LEVEL_PARAM_NAME,
DIR_PARAM_NAME,
JOB_NAME_PARAM_NAME,
NEO_ALLOWED_FRAMEWORKS,
SAGEMAKER_REGION_PARAM_NAME,
SCRIPT_PARAM_NAME,
Model,
)
from sagemaker.predictor import Predictor
from sagemaker.s3 import S3Uploader, parse_s3_url
from sagemaker.session import Session
from sagemaker.transformer import Transformer
from sagemaker.utils import (
Expand All @@ -77,7 +68,9 @@
get_config_value,
name_from_base,
)
from sagemaker import vpc_utils
from sagemaker.workflow.entities import Expression
from sagemaker.workflow.parameters import Parameter
from sagemaker.workflow.properties import Properties

logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -150,11 +143,14 @@ def __init__(
60 * 60). After this amount of time Amazon SageMaker terminates
the job regardless of its current status.
input_mode (str): The input mode that the algorithm supports
(default: 'File'). Valid modes: 'File' - Amazon SageMaker copies
the training dataset from the S3 location to a local directory.
(default: 'File'). Valid modes:
'File' - Amazon SageMaker copiesthe training dataset from the
S3 location to a local directory.
'Pipe' - Amazon SageMaker streams data directly from S3 to the
container via a Unix-named pipe. This argument can be overriden
on a per-channel basis using
container via a Unix-named pipe.
'FastFile' - Amazon SageMaker streams data from S3 on demand instead of
downloading the entire dataset before training begins. This argument can
be overriden on a per-channel basis using
``sagemaker.inputs.TrainingInput.input_mode``.
output_path (str): S3 location for saving the training result (model
artifacts and output files). If not specified, results are
Expand Down