Skip to content

Add PyTorch hyperparameter tuning integ test #318

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Jul 27, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
18 changes: 12 additions & 6 deletions tests/data/pytorch_mnist/mnist.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,14 +39,14 @@ def forward(self, x):
return F.log_softmax(x, dim=1)


def _get_train_data_loader(training_dir, is_distributed, **kwargs):
def _get_train_data_loader(training_dir, is_distributed, batch_size, **kwargs):
logger.info('Get train data loader')
dataset = datasets.MNIST(training_dir, train=True, transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.1307,), (0.3081,))
]))
train_sampler = torch.utils.data.distributed.DistributedSampler(dataset) if is_distributed else None
train_loader = torch.utils.data.DataLoader(dataset, batch_size=64, shuffle=train_sampler is None,
train_loader = torch.utils.data.DataLoader(dataset, batch_size=batch_size, shuffle=train_sampler is None,
sampler=train_sampler, **kwargs)
return train_sampler, train_loader

Expand Down Expand Up @@ -94,7 +94,7 @@ def train(args):
if use_cuda:
torch.cuda.manual_seed(seed)

train_sampler, train_loader = _get_train_data_loader(args.data_dir, is_distributed, **kwargs)
train_sampler, train_loader = _get_train_data_loader(args.data_dir, is_distributed, args.batch_size, **kwargs)
test_loader = _get_test_data_loader(args.data_dir, **kwargs)

logger.debug('Processes {}/{} ({:.0f}%) of train data'.format(
Expand Down Expand Up @@ -142,9 +142,11 @@ def train(args):
logger.debug('Train Epoch: {} [{}/{} ({:.0f}%)] Loss: {:.6f}'.format(
epoch, batch_idx * len(data), len(train_loader.sampler),
100. * batch_idx / len(train_loader), loss.item()))
test(model, test_loader, device)
accuracy = test(model, test_loader, device)
save_model(model, args.model_dir)

logger.debug('Overall test accuracy: {}'.format(accuracy))


def test(model, test_loader, device):
model.eval()
Expand All @@ -159,9 +161,12 @@ def test(model, test_loader, device):
correct += pred.eq(target.view_as(pred)).sum().item()

test_loss /= len(test_loader.dataset)
accuracy = 100. * correct / len(test_loader.dataset)

logger.debug('Test set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
test_loss, correct, len(test_loader.dataset),
100. * correct / len(test_loader.dataset)))
test_loss, correct, len(test_loader.dataset), accuracy))

return accuracy


def model_fn(model_dir):
Expand All @@ -181,6 +186,7 @@ def save_model(model, model_dir):
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--epochs', type=int, default=1, metavar='N')
parser.add_argument('--batch-size', type=int, default=64, metavar='N')

# Container environment
parser.add_argument('--hosts', type=list, default=json.loads(os.environ['SM_HOSTS']))
Expand Down
42 changes: 42 additions & 0 deletions tests/integ/test_tuner.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
from sagemaker.estimator import Estimator
from sagemaker.mxnet.estimator import MXNet
from sagemaker.predictor import json_deserializer
from sagemaker.pytorch import PyTorch
from sagemaker.tensorflow import TensorFlow
from sagemaker.tuner import IntegerParameter, ContinuousParameter, CategoricalParameter, HyperparameterTuner
from tests.integ import DATA_DIR
Expand Down Expand Up @@ -314,6 +315,47 @@ def test_tuning_chainer(sagemaker_session):
assert len(output) == batch_size


@pytest.mark.continuous_testing
def test_attach_tuning_pytorch(sagemaker_session):
mnist_dir = os.path.join(DATA_DIR, 'pytorch_mnist')
mnist_script = os.path.join(mnist_dir, 'mnist.py')

estimator = PyTorch(entry_point=mnist_script, role='SageMakerRole', train_instance_count=1,
train_instance_type='ml.c4.xlarge', sagemaker_session=sagemaker_session)

with timeout(minutes=15):
objective_metric_name = 'evaluation-accuracy'
metric_definitions = [{'Name': 'evaluation-accuracy', 'Regex': 'Overall test accuracy: (\d+)'}]
hyperparameter_ranges = {'batch-size': IntegerParameter(50, 100)}

tuner = HyperparameterTuner(estimator, objective_metric_name, hyperparameter_ranges, metric_definitions,
max_jobs=2, max_parallel_jobs=2)

training_data = estimator.sagemaker_session.upload_data(path=os.path.join(mnist_dir, 'training'),
key_prefix='integ-test-data/pytorch_mnist/training')
tuner.fit({'training': training_data})

tuning_job_name = tuner.latest_tuning_job.name

print('Started hyperparameter tuning job with name:' + tuning_job_name)

time.sleep(15)
tuner.wait()

attached_tuner = HyperparameterTuner.attach(tuning_job_name, sagemaker_session=sagemaker_session)
best_training_job = tuner.best_training_job()
with timeout_and_delete_endpoint_by_name(best_training_job, sagemaker_session, minutes=20):
predictor = attached_tuner.deploy(1, 'ml.c4.xlarge')
data = np.zeros(shape=(1, 1, 28, 28), dtype=np.float32)
predictor.predict(data)

batch_size = 100
data = np.random.rand(batch_size, 1, 28, 28).astype(np.float32)
output = predictor.predict(data)

assert output.shape == (batch_size, 10)


@pytest.mark.continuous_testing
def test_tuning_byo_estimator(sagemaker_session):
"""Use Factorization Machines algorithm as an example here.
Expand Down