Skip to content

feat: combined model + script artifact #3715

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 12 commits into from
Mar 24, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 9 additions & 5 deletions src/sagemaker/jumpstart/artifacts.py
Original file line number Diff line number Diff line change
Expand Up @@ -173,10 +173,10 @@ def _retrieve_image_uri(
def _retrieve_model_uri(
model_id: str,
model_version: str,
model_scope: Optional[str],
region: Optional[str],
tolerate_vulnerable_model: bool,
tolerate_deprecated_model: bool,
model_scope: Optional[str] = None,
region: Optional[str] = None,
tolerate_vulnerable_model: bool = False,
tolerate_deprecated_model: bool = False,
):
"""Retrieves the model artifact S3 URI for the model matching the given arguments.

Expand Down Expand Up @@ -219,7 +219,11 @@ def _retrieve_model_uri(
)

if model_scope == JumpStartScriptScope.INFERENCE:
model_artifact_key = model_specs.hosting_artifact_key
model_artifact_key = (
getattr(model_specs, "hosting_prepacked_artifact_key", None)
or model_specs.hosting_artifact_key
)

elif model_scope == JumpStartScriptScope.TRAINING:
model_artifact_key = model_specs.training_artifact_key

Expand Down
4 changes: 4 additions & 0 deletions src/sagemaker/jumpstart/types.py
Original file line number Diff line number Diff line change
Expand Up @@ -293,6 +293,7 @@ class JumpStartModelSpecs(JumpStartDataHolderType):
"training_vulnerabilities",
"deprecated",
"metrics",
"hosting_prepacked_artifact_key",
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Would you be opposed to adding the training_prepacked_script_key in this PR along with similar logic for retrieval?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Let's do that in another PR

]

def __init__(self, spec: Dict[str, Any]):
Expand Down Expand Up @@ -330,6 +331,9 @@ def from_json(self, json_obj: Dict[str, Any]) -> None:
self.training_vulnerabilities: List[str] = json_obj["training_vulnerabilities"]
self.deprecated: bool = bool(json_obj["deprecated"])
self.metrics: Optional[List[Dict[str, str]]] = json_obj.get("metrics", None)
self.hosting_prepacked_artifact_key: Optional[str] = json_obj.get(
"hosting_prepacked_artifact_key", None
)

if self.training_supported:
self.training_ecr_specs: JumpStartECRSpecs = JumpStartECRSpecs(
Expand Down
86 changes: 86 additions & 0 deletions tests/unit/sagemaker/jumpstart/constants.py
Original file line number Diff line number Diff line change
Expand Up @@ -12,6 +12,91 @@
# language governing permissions and limitations under the License.
from __future__ import absolute_import

SPECIAL_MODEL_SPECS_DICT = {
"huggingface-text2text-flan-t5-xxl-fp16": {
"model_id": "huggingface-text2text-flan-t5-xxl-fp16",
"url": "https://huggingface.co/google/flan-t5-xxl",
"version": "1.0.0",
"min_sdk_version": "2.130.0",
"training_supported": False,
"incremental_training_supported": False,
"hosting_ecr_specs": {
"framework": "pytorch",
"framework_version": "1.12.0",
"py_version": "py38",
"huggingface_transformers_version": "4.17.0",
},
"hosting_artifact_key": "huggingface-infer/infer-huggingface-text2text-flan-t5-xxl-fp16.tar.gz",
"hosting_script_key": "source-directory-tarballs/huggingface/inference/text2text/v1.0.2/sourcedir.tar.gz",
"hosting_prepacked_artifact_key": "huggingface-infer/prepack/v1.0.0/infer-prepack-huggingface-"
"text2text-flan-t5-xxl-fp16.tar.gz",
"hosting_prepacked_artifact_version": "1.0.0",
"inference_vulnerable": False,
"inference_dependencies": [
"accelerate==0.16.0",
"bitsandbytes==0.37.0",
"filelock==3.9.0",
"huggingface-hub==0.12.0",
"regex==2022.7.9",
"tokenizers==0.13.2",
"transformers==4.26.0",
],
"inference_vulnerabilities": [],
"training_vulnerable": False,
"training_dependencies": [],
"training_vulnerabilities": [],
"deprecated": False,
"inference_environment_variables": [
{
"name": "SAGEMAKER_PROGRAM",
"type": "text",
"default": "inference.py",
"scope": "container",
},
{
"name": "SAGEMAKER_SUBMIT_DIRECTORY",
"type": "text",
"default": "/opt/ml/model/code",
"scope": "container",
},
{
"name": "SAGEMAKER_CONTAINER_LOG_LEVEL",
"type": "text",
"default": "20",
"scope": "container",
},
{
"name": "MODEL_CACHE_ROOT",
"type": "text",
"default": "/opt/ml/model",
"scope": "container",
},
{"name": "SAGEMAKER_ENV", "type": "text", "default": "1", "scope": "container"},
{
"name": "SAGEMAKER_MODEL_SERVER_WORKERS",
"type": "text",
"default": "1",
"scope": "container",
},
{
"name": "SAGEMAKER_MODEL_SERVER_TIMEOUT",
"type": "text",
"default": "3600",
"scope": "container",
},
],
"metrics": [],
"default_inference_instance_type": "ml.g5.12xlarge",
"supported_inference_instance_types": [
"ml.g5.12xlarge",
"ml.g5.24xlarge",
"ml.p3.8xlarge",
"ml.p3.16xlarge",
"ml.g4dn.12xlarge",
],
}
}

PROTOTYPICAL_MODEL_SPECS_DICT = {
"pytorch-eqa-bert-base-cased": {
"model_id": "pytorch-eqa-bert-base-cased",
Expand Down Expand Up @@ -1093,6 +1178,7 @@
"training_artifact_key": "pytorch-training/train-pytorch-ic-mobilenet-v2.tar.gz",
"hosting_script_key": "source-directory-tarballs/pytorch/inference/ic/v1.0.0/sourcedir.tar.gz",
"training_script_key": "source-directory-tarballs/pytorch/transfer_learning/ic/v1.0.0/sourcedir.tar.gz",
"hosting_prepacked_artifact_key": None,
"hyperparameters": [
{
"name": "epochs",
Expand Down
13 changes: 13 additions & 0 deletions tests/unit/sagemaker/jumpstart/utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,7 @@
BASE_MANIFEST,
BASE_SPEC,
BASE_HEADER,
SPECIAL_MODEL_SPECS_DICT,
)


Expand Down Expand Up @@ -92,6 +93,18 @@ def get_prototype_model_spec(
return specs


def get_special_model_spec(
region: str = None, model_id: str = None, version: str = None
) -> JumpStartModelSpecs:
"""This function mocks cache accessor functions. For this mock,
we only retrieve model specs based on the model ID. This is reserved
for special specs.
"""

specs = JumpStartModelSpecs(SPECIAL_MODEL_SPECS_DICT[model_id])
return specs


def get_spec_from_base_spec(
_obj: JumpStartModelsCache = None,
region: str = None,
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,38 @@
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License"). You
# may not use this file except in compliance with the License. A copy of
# the License is located at
#
# http://aws.amazon.com/apache2.0/
#
# or in the "license" file accompanying this file. This file is
# distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific
# language governing permissions and limitations under the License.
from __future__ import absolute_import

from mock.mock import patch

from sagemaker import model_uris

from tests.unit.sagemaker.jumpstart.utils import get_special_model_spec


@patch("sagemaker.jumpstart.accessors.JumpStartModelsAccessor.get_model_specs")
def test_jumpstart_combined_artifacts(patched_get_model_specs):

patched_get_model_specs.side_effect = get_special_model_spec

model_id_combined_model_artifact = "huggingface-text2text-flan-t5-xxl-fp16"

uri = model_uris.retrieve(
region="us-west-2",
model_scope="inference",
model_id=model_id_combined_model_artifact,
model_version="*",
)
assert (
uri == "s3://jumpstart-cache-prod-us-west-2/huggingface-infer/"
"prepack/v1.0.0/infer-prepack-huggingface-text2text-flan-t5-xxl-fp16.tar.gz"
)