Skip to content

change: enable neo framework version support on ml_inf2 and ml_trn1 #3909

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jun 7, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 8 additions & 3 deletions src/sagemaker/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -844,15 +844,20 @@ def multi_version_compilation_supported(
):
if target_instance_type and framework and framework_version:
framework = framework.lower()

multi_version_frameworks_support_mapping = {
"inferentia": ["pytorch", "tensorflow", "mxnet"],
"ml_inf1": ["pytorch", "tensorflow", "mxnet"],
"ml_inf2": ["pytorch", "tensorflow"],
"ml_trn1": ["pytorch", "tensorflow"],
"neo_ioc_targets": ["pytorch", "tensorflow"],
"neo_edge_targets": ["pytorch", "tensorflow"],
}
if target_instance_type in NEO_IOC_TARGET_DEVICES:
return framework in multi_version_frameworks_support_mapping["neo_ioc_targets"]
if target_instance_type == "ml_inf1":
return framework in multi_version_frameworks_support_mapping["inferentia"]
if target_instance_type in ["ml_inf1", "ml_inf2", "ml_trn1"]:
return (
framework in multi_version_frameworks_support_mapping[target_instance_type]
)
if target_instance_type not in NEO_MULTIVERSION_UNSUPPORTED:
return framework in multi_version_frameworks_support_mapping["neo_edge_targets"]
return False
Expand Down
68 changes: 22 additions & 46 deletions tests/unit/sagemaker/model/test_neo.py
Original file line number Diff line number Diff line change
Expand Up @@ -362,59 +362,35 @@ def test_compile_with_tensorflow_neo_in_ml_inf(session):
)


def test_compile_validates_framework_version(sagemaker_session):
sagemaker_session.wait_for_compilation_job = Mock(
return_value={
"CompilationJobStatus": "Completed",
"ModelArtifacts": {"S3ModelArtifacts": "s3://output-path/model.tar.gz"},
"InferenceImage": None,
}
)
@pytest.mark.parametrize(
"target,framework,fx_version,expected_fx_version",
[
("ml_c4", "pytorch", "1.6", "1.6"),
("rasp3b", "pytorch", "1.6.1", "1.6"),
("amba_cv2", "pytorch", "1.6.1", None),
("ml_c4", "tensorflow", "1.15.1", "1.15"),
("ml_c4", "tensorflow", "2.15.1", "2.15"),
("ml_inf1", "tensorflow", "2.15.1", "2.15"),
("ml_inf2", "pytorch", "2.0", "2.0"),
("ml_inf2", "pytorch", "2.0.1", "2.0"),
("ml_trn1", "pytorch", "2.0.1", "2.0"),
("ml_trn1", "tensorflow", "2.0.1", "2.0"),
],
)
def test_compile_validates_framework_version(
sagemaker_session, target, framework, fx_version, expected_fx_version
):
model = _create_model(sagemaker_session)
model.compile(
target_instance_family="ml_c4",
input_shape={"data": [1, 3, 1024, 1024]},
output_path="s3://output",
role="role",
framework="pytorch",
framework_version="1.6.1",
job_name="compile-model",
)

assert model.image_uri is None

sagemaker_session.wait_for_compilation_job = Mock(
return_value={
"CompilationJobStatus": "Completed",
"ModelArtifacts": {"S3ModelArtifacts": "s3://output-path/model.tar.gz"},
"InferenceImage": None,
}
)

config = model._compilation_job_config(
"rasp3b",
{"data": [1, 3, 1024, 1024]},
"s3://output",
"role",
900,
"compile-model",
"pytorch",
None,
framework_version="1.6.1",
)

assert config["input_model_config"]["FrameworkVersion"] == "1.6"

config = model._compilation_job_config(
"amba_cv2",
target,
{"data": [1, 3, 1024, 1024]},
"s3://output",
"role",
900,
"compile-model",
"pytorch",
framework,
None,
framework_version="1.6.1",
framework_version=fx_version,
)

assert config["input_model_config"].get("FrameworkVersion", None) is None
assert config["input_model_config"].get("FrameworkVersion", None) == expected_fx_version